Spaces:
Running
Running
from request_llm.bridge_chatgpt import predict_no_ui | |
from toolbox import update_ui | |
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down | |
fast_debug = False | |
def readPdf(pdfPath): | |
""" | |
读取pdf文件,返回文本内容 | |
""" | |
import pdfminer | |
from pdfminer.pdfparser import PDFParser | |
from pdfminer.pdfdocument import PDFDocument | |
from pdfminer.pdfpage import PDFPage, PDFTextExtractionNotAllowed | |
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter | |
from pdfminer.pdfdevice import PDFDevice | |
from pdfminer.layout import LAParams | |
from pdfminer.converter import PDFPageAggregator | |
fp = open(pdfPath, 'rb') | |
# Create a PDF parser object associated with the file object | |
parser = PDFParser(fp) | |
# Create a PDF document object that stores the document structure. | |
# Password for initialization as 2nd parameter | |
document = PDFDocument(parser) | |
# Check if the document allows text extraction. If not, abort. | |
if not document.is_extractable: | |
raise PDFTextExtractionNotAllowed | |
# Create a PDF resource manager object that stores shared resources. | |
rsrcmgr = PDFResourceManager() | |
# Create a PDF device object. | |
# device = PDFDevice(rsrcmgr) | |
# BEGIN LAYOUT ANALYSIS. | |
# Set parameters for analysis. | |
laparams = LAParams( | |
char_margin=10.0, | |
line_margin=0.2, | |
boxes_flow=0.2, | |
all_texts=False, | |
) | |
# Create a PDF page aggregator object. | |
device = PDFPageAggregator(rsrcmgr, laparams=laparams) | |
# Create a PDF interpreter object. | |
interpreter = PDFPageInterpreter(rsrcmgr, device) | |
# loop over all pages in the document | |
outTextList = [] | |
for page in PDFPage.create_pages(document): | |
# read the page into a layout object | |
interpreter.process_page(page) | |
layout = device.get_result() | |
for obj in layout._objs: | |
if isinstance(obj, pdfminer.layout.LTTextBoxHorizontal): | |
# print(obj.get_text()) | |
outTextList.append(obj.get_text()) | |
return outTextList | |
def 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt): | |
import time, glob, os | |
from bs4 import BeautifulSoup | |
print('begin analysis on:', file_manifest) | |
for index, fp in enumerate(file_manifest): | |
if ".tex" in fp: | |
with open(fp, 'r', encoding='utf-8') as f: | |
file_content = f.read() | |
if ".pdf" in fp.lower(): | |
file_content = readPdf(fp) | |
file_content = BeautifulSoup(''.join(file_content), features="lxml").body.text.encode('gbk', 'ignore').decode('gbk') | |
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else "" | |
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```' | |
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}' | |
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response.")) | |
yield from update_ui(chatbot=chatbot, history=history) | |
if not fast_debug: | |
msg = '正常' | |
# ** gpt request ** | |
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temperature, history=[]) # 带超时倒计时 | |
chatbot[-1] = (i_say_show_user, gpt_say) | |
history.append(i_say_show_user); history.append(gpt_say) | |
yield from update_ui(chatbot=chatbot, history=chatbot, msg=msg) | |
if not fast_debug: time.sleep(2) | |
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)]) | |
i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。' | |
chatbot.append((i_say, "[Local Message] waiting gpt response.")) | |
yield from update_ui(chatbot=chatbot, history=history) | |
if not fast_debug: | |
msg = '正常' | |
# ** gpt request ** | |
gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say, chatbot, top_p, temperature, history=history) # 带超时倒计时 | |
chatbot[-1] = (i_say, gpt_say) | |
history.append(i_say); history.append(gpt_say) | |
yield from update_ui(chatbot=chatbot, history=chatbot, msg=msg) | |
res = write_results_to_file(history) | |
chatbot.append(("完成了吗?", res)) | |
yield from update_ui(chatbot=chatbot, history=chatbot, msg=msg) | |
def 批量总结PDF文档pdfminer(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT): | |
history = [] # 清空历史,以免输入溢出 | |
import glob, os | |
# 基本信息:功能、贡献者 | |
chatbot.append([ | |
"函数插件功能?", | |
"批量总结PDF文档,此版本使用pdfminer插件,带token约简功能。函数插件贡献者: Euclid-Jie。"]) | |
yield from update_ui(chatbot=chatbot, history=history) | |
# 尝试导入依赖,如果缺少依赖,则给出安装建议 | |
try: | |
import pdfminer, bs4 | |
except: | |
report_execption(chatbot, history, | |
a = f"解析项目: {txt}", | |
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pdfminer beautifulsoup4```。") | |
yield from update_ui(chatbot=chatbot, history=history) | |
return | |
if os.path.exists(txt): | |
project_folder = txt | |
else: | |
if txt == "": txt = '空空如也的输入栏' | |
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}") | |
yield from update_ui(chatbot=chatbot, history=history) | |
return | |
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] + \ | |
[f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)] # + \ | |
# [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \ | |
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)] | |
if len(file_manifest) == 0: | |
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex或pdf文件: {txt}") | |
yield from update_ui(chatbot=chatbot, history=history) | |
return | |
yield from 解析Paper(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt) | |