"""
    该文件中主要包含三个函数

    不具备多线程能力的函数:
    1. predict: 正常对话时使用,具备完备的交互功能,不可多线程

    具备多线程调用能力的函数
    2. predict_no_ui_long_connection:支持多线程
"""

import json
import time
import logging
import requests
import base64
import os
import glob
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, \
    update_ui_lastest_msg, get_max_token, encode_image, have_any_recent_upload_image_files


proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
    get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')

timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
                  '网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'


def report_invalid_key(key):
    if get_conf("BLOCK_INVALID_APIKEY"): 
        # 实验性功能,自动检测并屏蔽失效的KEY,请勿使用
        from request_llms.key_manager import ApiKeyManager
        api_key = ApiKeyManager().add_key_to_blacklist(key)

def get_full_error(chunk, stream_response):
    """
        获取完整的从Openai返回的报错
    """
    while True:
        try:
            chunk += next(stream_response)
        except:
            break
    return chunk

def decode_chunk(chunk):
    # 提前读取一些信息 (用于判断异常)
    chunk_decoded = chunk.decode()
    chunkjson = None
    has_choices = False
    choice_valid = False
    has_content = False
    has_role = False
    try: 
        chunkjson = json.loads(chunk_decoded[6:])
        has_choices = 'choices' in chunkjson
        if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
        if has_choices and choice_valid: has_content = "content" in chunkjson['choices'][0]["delta"]
        if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
    except: 
        pass
    return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role

from functools import lru_cache
@lru_cache(maxsize=32)
def verify_endpoint(endpoint):
    """
        检查endpoint是否可用
    """
    return endpoint

def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
    raise NotImplementedError


def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):

    have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot)

    if is_any_api_key(inputs):
        chatbot._cookies['api_key'] = inputs
        chatbot.append(("输入已识别为openai的api_key", what_keys(inputs)))
        yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
        return
    elif not is_any_api_key(chatbot._cookies['api_key']):
        chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。"))
        yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") # 刷新界面
        return
    if not have_recent_file:
        chatbot.append((inputs, "没有检测到任何近期上传的图像文件,请上传jpg格式的图片,此外,请注意拓展名需要小写"))
        yield from update_ui(chatbot=chatbot, history=history, msg="等待图片") # 刷新界面
        return
    if os.path.exists(inputs):
        chatbot.append((inputs, "已经接收到您上传的文件,您不需要再重复强调该文件的路径了,请直接输入您的问题。"))
        yield from update_ui(chatbot=chatbot, history=history, msg="等待指令") # 刷新界面
        return


    user_input = inputs
    if additional_fn is not None:
        from core_functional import handle_core_functionality
        inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)

    raw_input = inputs
    logging.info(f'[raw_input] {raw_input}')
    def make_media_input(inputs, image_paths): 
        for image_path in image_paths:
            inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
        return inputs
    chatbot.append((make_media_input(inputs, image_paths), ""))
    yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面

    # check mis-behavior
    if is_the_upload_folder(user_input):
        chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
        yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
        time.sleep(2)

    try:
        headers, payload, api_key = generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths)
    except RuntimeError as e:
        chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
        yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
        return
        
    # 检查endpoint是否合法
    try:
        from .bridge_all import model_info
        endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
    except:
        tb_str = '```\n' + trimmed_format_exc() + '```'
        chatbot[-1] = (inputs, tb_str)
        yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面
        return

    history.append(make_media_input(inputs, image_paths))
    history.append("")

    retry = 0
    while True:
        try:
            # make a POST request to the API endpoint, stream=True
            response = requests.post(endpoint, headers=headers, proxies=proxies,
                                    json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
        except:
            retry += 1
            chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
            retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
            yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
            if retry > MAX_RETRY: raise TimeoutError

    gpt_replying_buffer = ""
    
    is_head_of_the_stream = True
    if stream:
        stream_response =  response.iter_lines()
        while True:
            try:
                chunk = next(stream_response)
            except StopIteration:
                # 非OpenAI官方接口的出现这样的报错,OpenAI和API2D不会走这里
                chunk_decoded = chunk.decode()
                error_msg = chunk_decoded
                # 首先排除一个one-api没有done数据包的第三方Bug情形
                if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0: 
                    yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。")
                    break
                # 其他情况,直接返回报错
                chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key)
                yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面
                return
            
            # 提前读取一些信息 (用于判断异常)
            chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)

            if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r"content" not in chunk_decoded):
                # 数据流的第一帧不携带content
                is_head_of_the_stream = False; continue
            
            if chunk:
                try:
                    if has_choices and not choice_valid:
                        # 一些垃圾第三方接口的出现这样的错误
                        continue
                    # 前者是API2D的结束条件,后者是OPENAI的结束条件
                    if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
                        # 判定为数据流的结束,gpt_replying_buffer也写完了
                        lastmsg = chatbot[-1][-1] + f"\n\n\n\n「{llm_kwargs['llm_model']}调用结束,该模型不具备上下文对话能力,如需追问,请及时切换模型。」"
                        yield from update_ui_lastest_msg(lastmsg, chatbot, history, delay=1)
                        logging.info(f'[response] {gpt_replying_buffer}')
                        break
                    # 处理数据流的主体
                    status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
                    # 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
                    if has_content:
                        # 正常情况
                        gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
                    elif has_role:
                        # 一些第三方接口的出现这样的错误,兼容一下吧
                        continue
                    else:
                        # 一些垃圾第三方接口的出现这样的错误
                        gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]

                    history[-1] = gpt_replying_buffer
                    chatbot[-1] = (history[-2], history[-1])
                    yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
                except Exception as e:
                    yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
                    chunk = get_full_error(chunk, stream_response)
                    chunk_decoded = chunk.decode()
                    error_msg = chunk_decoded
                    chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key)
                    yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
                    print(error_msg)
                    return

def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key=""):
    from .bridge_all import model_info
    openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
    if "reduce the length" in error_msg:
        if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
        history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'], 
                                               max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
        chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
    elif "does not exist" in error_msg:
        chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
    elif "Incorrect API key" in error_msg:
        chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务. " + openai_website); report_invalid_key(api_key)
    elif "exceeded your current quota" in error_msg:
        chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website); report_invalid_key(api_key)
    elif "account is not active" in error_msg:
        chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website); report_invalid_key(api_key)
    elif "associated with a deactivated account" in error_msg:
        chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website); report_invalid_key(api_key)
    elif "API key has been deactivated" in error_msg:
        chatbot[-1] = (chatbot[-1][0], "[Local Message] API key has been deactivated. OpenAI以账户失效为由, 拒绝服务." + openai_website); report_invalid_key(api_key)
    elif "bad forward key" in error_msg:
        chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
    elif "Not enough point" in error_msg:
        chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
    else:
        from toolbox import regular_txt_to_markdown
        tb_str = '```\n' + trimmed_format_exc() + '```'
        chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
    return chatbot, history


def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
    """
    整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
    """
    if not is_any_api_key(llm_kwargs['api_key']):
        raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")

    api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])

    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {api_key}"
    }
    if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
    if llm_kwargs['llm_model'].startswith('azure-'): 
        headers.update({"api-key": api_key})
        if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
            azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
            headers.update({"api-key": azure_api_key_unshared})

    base64_images = []
    for image_path in image_paths:
        base64_images.append(encode_image(image_path))

    messages = []
    what_i_ask_now = {}
    what_i_ask_now["role"] = "user"
    what_i_ask_now["content"] = []
    what_i_ask_now["content"].append({
        "type": "text",
        "text": inputs
    })

    for image_path, base64_image in zip(image_paths, base64_images):
        what_i_ask_now["content"].append({
            "type": "image_url",
            "image_url": {
                "url": f"data:image/jpeg;base64,{base64_image}"
            }
        })

    messages.append(what_i_ask_now)
    model = llm_kwargs['llm_model']
    if llm_kwargs['llm_model'].startswith('api2d-'):
        model = llm_kwargs['llm_model'][len('api2d-'):]

    payload = {
        "model": model,
        "messages": messages, 
        "temperature": llm_kwargs['temperature'],   # 1.0,
        "top_p": llm_kwargs['top_p'],               # 1.0,
        "n": 1,
        "stream": True,
        "max_tokens": get_max_token(llm_kwargs),
        "presence_penalty": 0,
        "frequency_penalty": 0,
    }
    try:
        print(f" {llm_kwargs['llm_model']} : {inputs[:100]} ..........")
    except:
        print('输入中可能存在乱码。')
    return headers, payload, api_key