File size: 8,392 Bytes
aa8012e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d16536
aa8012e
 
 
 
 
 
 
 
 
 
0f90f5b
 
fba397b
aa8012e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d16536
 
fd227fe
aa8012e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import gc

import cv2
import insightface
import torch
import torch.nn as nn
from basicsr.utils import img2tensor, tensor2img
from facexlib.parsing import init_parsing_model
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from huggingface_hub import hf_hub_download, snapshot_download
from insightface.app import FaceAnalysis
from safetensors.torch import load_file
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import normalize, resize

from eva_clip import create_model_and_transforms
from eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
from pulid.encoders_flux import IDFormer, PerceiverAttentionCA


class PuLIDPipeline(nn.Module):
    def __init__(self, dit, device, weight_dtype=torch.bfloat16, *args, **kwargs):
        super().__init__()
        self.device = device
        self.weight_dtype = weight_dtype
        double_interval = 2
        single_interval = 4

        # init encoder
        self.pulid_encoder = IDFormer().to(self.device, self.weight_dtype)

        num_ca = 19 // double_interval + 38 // single_interval
        if 19 % double_interval != 0:
            num_ca += 1
        if 38 % single_interval != 0:
            num_ca += 1
        self.pulid_ca = nn.ModuleList([
            PerceiverAttentionCA().to(self.device, self.weight_dtype) for _ in range(num_ca)
        ])

        dit.pulid_ca = self.pulid_ca
        dit.pulid_double_interval = double_interval
        dit.pulid_single_interval = single_interval

        # preprocessors
        # face align and parsing
        print('pipeline init: ', self.device)
        self.face_helper = FaceRestoreHelper(
            upscale_factor=1,
            face_size=512,
            crop_ratio=(1, 1),
            det_model='retinaface_resnet50',
            save_ext='png',
            device=self.device,
        )
        self.face_helper.face_parse = None
        self.face_helper.face_parse = init_parsing_model(model_name='bisenet', device=self.device)
        self.face_helper.face_parse = self.face_helper.face_parse.to(self.device)
        self.face_helper.face_det = self.face_helper.face_det.to(self.device)
        self.face_helper.face_det.body = self.face_helper.face_det.body.to(self.device)
        # clip-vit backbone
        model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True)
        model = model.visual
        self.clip_vision_model = model.to(self.device, dtype=self.weight_dtype)
        eva_transform_mean = getattr(self.clip_vision_model, 'image_mean', OPENAI_DATASET_MEAN)
        eva_transform_std = getattr(self.clip_vision_model, 'image_std', OPENAI_DATASET_STD)
        if not isinstance(eva_transform_mean, (list, tuple)):
            eva_transform_mean = (eva_transform_mean,) * 3
        if not isinstance(eva_transform_std, (list, tuple)):
            eva_transform_std = (eva_transform_std,) * 3
        self.eva_transform_mean = eva_transform_mean
        self.eva_transform_std = eva_transform_std
        # antelopev2
        snapshot_download('DIAMONIK7777/antelopev2', local_dir='models/antelopev2')
        self.app = FaceAnalysis(
            name='antelopev2', root='.', providers=['CPUExecutionProvider']
        )
        self.app.prepare(ctx_id=0, det_size=(640, 640))
        self.handler_ante = insightface.model_zoo.get_model('models/antelopev2/glintr100.onnx')
        self.handler_ante.prepare(ctx_id=0)

        gc.collect()
        torch.cuda.empty_cache()

        # self.load_pretrain()

        # other configs
        self.debug_img_list = []

    def load_pretrain(self, pretrain_path=None):
        hf_hub_download('guozinan/PuLID', 'pulid_flux_v0.9.0.safetensors', local_dir='models')
        ckpt_path = 'models/pulid_flux_v0.9.0.safetensors'
        if pretrain_path is not None:
            ckpt_path = pretrain_path
        state_dict = load_file(ckpt_path)
        state_dict_dict = {}
        for k, v in state_dict.items():
            module = k.split('.')[0]
            state_dict_dict.setdefault(module, {})
            new_k = k[len(module) + 1:]
            state_dict_dict[module][new_k] = v

        for module in state_dict_dict:
            print(f'loading from {module}')
            getattr(self, module).load_state_dict(state_dict_dict[module], strict=True)

        del state_dict
        del state_dict_dict

    def to_gray(self, img):
        x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
        x = x.repeat(1, 3, 1, 1)
        return x

    def get_id_embedding(self, image, cal_uncond=False):
        """
        Args:
            image: numpy rgb image, range [0, 255]
        """
        self.face_helper.clean_all()
        self.debug_img_list = []
        image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        # get antelopev2 embedding
        face_info = self.app.get(image_bgr)
        if len(face_info) > 0:
            face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[
                -1
            ]  # only use the maximum face
            id_ante_embedding = face_info['embedding']
            self.debug_img_list.append(
                image[
                    int(face_info['bbox'][1]) : int(face_info['bbox'][3]),
                    int(face_info['bbox'][0]) : int(face_info['bbox'][2]),
                ]
            )
        else:
            id_ante_embedding = None

        # using facexlib to detect and align face
        self.face_helper.read_image(image_bgr)
        print('face_det_device: ', self.face_helper.face_det.device)
        print('face_det_mean_tensor_device: ', self.face_helper.face_det.mean_tensor.device)
        self.face_helper.face_det.mean_tensor = self.face_helper.face_det.mean_tensor.to(self.device)
        self.face_helper.get_face_landmarks_5(only_center_face=True)
        self.face_helper.align_warp_face()
        if len(self.face_helper.cropped_faces) == 0:
            raise RuntimeError('facexlib align face fail')
        align_face = self.face_helper.cropped_faces[0]
        # incase insightface didn't detect face
        if id_ante_embedding is None:
            print('fail to detect face using insightface, extract embedding on align face')
            id_ante_embedding = self.handler_ante.get_feat(align_face)

        id_ante_embedding = torch.from_numpy(id_ante_embedding).to(self.device, self.weight_dtype)
        if id_ante_embedding.ndim == 1:
            id_ante_embedding = id_ante_embedding.unsqueeze(0)

        # parsing
        input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
        input = input.to(self.device)
        parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
        parsing_out = parsing_out.argmax(dim=1, keepdim=True)
        bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
        bg = sum(parsing_out == i for i in bg_label).bool()
        white_image = torch.ones_like(input)
        # only keep the face features
        face_features_image = torch.where(bg, white_image, self.to_gray(input))
        self.debug_img_list.append(tensor2img(face_features_image, rgb2bgr=False))

        # transform img before sending to eva-clip-vit
        face_features_image = resize(face_features_image, self.clip_vision_model.image_size, InterpolationMode.BICUBIC)
        face_features_image = normalize(face_features_image, self.eva_transform_mean, self.eva_transform_std)
        id_cond_vit, id_vit_hidden = self.clip_vision_model(
            face_features_image.to(self.weight_dtype), return_all_features=False, return_hidden=True, shuffle=False
        )
        id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True)
        id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm)

        id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1)

        id_embedding = self.pulid_encoder(id_cond, id_vit_hidden)

        if not cal_uncond:
            return id_embedding, None

        id_uncond = torch.zeros_like(id_cond)
        id_vit_hidden_uncond = []
        for layer_idx in range(0, len(id_vit_hidden)):
            id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden[layer_idx]))
        uncond_id_embedding = self.pulid_encoder(id_uncond, id_vit_hidden_uncond)

        return id_embedding, uncond_id_embedding