Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,392 Bytes
aa8012e 3d16536 aa8012e 0f90f5b fba397b aa8012e 3d16536 fd227fe aa8012e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import gc
import cv2
import insightface
import torch
import torch.nn as nn
from basicsr.utils import img2tensor, tensor2img
from facexlib.parsing import init_parsing_model
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from huggingface_hub import hf_hub_download, snapshot_download
from insightface.app import FaceAnalysis
from safetensors.torch import load_file
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import normalize, resize
from eva_clip import create_model_and_transforms
from eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
from pulid.encoders_flux import IDFormer, PerceiverAttentionCA
class PuLIDPipeline(nn.Module):
def __init__(self, dit, device, weight_dtype=torch.bfloat16, *args, **kwargs):
super().__init__()
self.device = device
self.weight_dtype = weight_dtype
double_interval = 2
single_interval = 4
# init encoder
self.pulid_encoder = IDFormer().to(self.device, self.weight_dtype)
num_ca = 19 // double_interval + 38 // single_interval
if 19 % double_interval != 0:
num_ca += 1
if 38 % single_interval != 0:
num_ca += 1
self.pulid_ca = nn.ModuleList([
PerceiverAttentionCA().to(self.device, self.weight_dtype) for _ in range(num_ca)
])
dit.pulid_ca = self.pulid_ca
dit.pulid_double_interval = double_interval
dit.pulid_single_interval = single_interval
# preprocessors
# face align and parsing
print('pipeline init: ', self.device)
self.face_helper = FaceRestoreHelper(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
device=self.device,
)
self.face_helper.face_parse = None
self.face_helper.face_parse = init_parsing_model(model_name='bisenet', device=self.device)
self.face_helper.face_parse = self.face_helper.face_parse.to(self.device)
self.face_helper.face_det = self.face_helper.face_det.to(self.device)
self.face_helper.face_det.body = self.face_helper.face_det.body.to(self.device)
# clip-vit backbone
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True)
model = model.visual
self.clip_vision_model = model.to(self.device, dtype=self.weight_dtype)
eva_transform_mean = getattr(self.clip_vision_model, 'image_mean', OPENAI_DATASET_MEAN)
eva_transform_std = getattr(self.clip_vision_model, 'image_std', OPENAI_DATASET_STD)
if not isinstance(eva_transform_mean, (list, tuple)):
eva_transform_mean = (eva_transform_mean,) * 3
if not isinstance(eva_transform_std, (list, tuple)):
eva_transform_std = (eva_transform_std,) * 3
self.eva_transform_mean = eva_transform_mean
self.eva_transform_std = eva_transform_std
# antelopev2
snapshot_download('DIAMONIK7777/antelopev2', local_dir='models/antelopev2')
self.app = FaceAnalysis(
name='antelopev2', root='.', providers=['CPUExecutionProvider']
)
self.app.prepare(ctx_id=0, det_size=(640, 640))
self.handler_ante = insightface.model_zoo.get_model('models/antelopev2/glintr100.onnx')
self.handler_ante.prepare(ctx_id=0)
gc.collect()
torch.cuda.empty_cache()
# self.load_pretrain()
# other configs
self.debug_img_list = []
def load_pretrain(self, pretrain_path=None):
hf_hub_download('guozinan/PuLID', 'pulid_flux_v0.9.0.safetensors', local_dir='models')
ckpt_path = 'models/pulid_flux_v0.9.0.safetensors'
if pretrain_path is not None:
ckpt_path = pretrain_path
state_dict = load_file(ckpt_path)
state_dict_dict = {}
for k, v in state_dict.items():
module = k.split('.')[0]
state_dict_dict.setdefault(module, {})
new_k = k[len(module) + 1:]
state_dict_dict[module][new_k] = v
for module in state_dict_dict:
print(f'loading from {module}')
getattr(self, module).load_state_dict(state_dict_dict[module], strict=True)
del state_dict
del state_dict_dict
def to_gray(self, img):
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
x = x.repeat(1, 3, 1, 1)
return x
def get_id_embedding(self, image, cal_uncond=False):
"""
Args:
image: numpy rgb image, range [0, 255]
"""
self.face_helper.clean_all()
self.debug_img_list = []
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# get antelopev2 embedding
face_info = self.app.get(image_bgr)
if len(face_info) > 0:
face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[
-1
] # only use the maximum face
id_ante_embedding = face_info['embedding']
self.debug_img_list.append(
image[
int(face_info['bbox'][1]) : int(face_info['bbox'][3]),
int(face_info['bbox'][0]) : int(face_info['bbox'][2]),
]
)
else:
id_ante_embedding = None
# using facexlib to detect and align face
self.face_helper.read_image(image_bgr)
print('face_det_device: ', self.face_helper.face_det.device)
print('face_det_mean_tensor_device: ', self.face_helper.face_det.mean_tensor.device)
self.face_helper.face_det.mean_tensor = self.face_helper.face_det.mean_tensor.to(self.device)
self.face_helper.get_face_landmarks_5(only_center_face=True)
self.face_helper.align_warp_face()
if len(self.face_helper.cropped_faces) == 0:
raise RuntimeError('facexlib align face fail')
align_face = self.face_helper.cropped_faces[0]
# incase insightface didn't detect face
if id_ante_embedding is None:
print('fail to detect face using insightface, extract embedding on align face')
id_ante_embedding = self.handler_ante.get_feat(align_face)
id_ante_embedding = torch.from_numpy(id_ante_embedding).to(self.device, self.weight_dtype)
if id_ante_embedding.ndim == 1:
id_ante_embedding = id_ante_embedding.unsqueeze(0)
# parsing
input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
input = input.to(self.device)
parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
bg = sum(parsing_out == i for i in bg_label).bool()
white_image = torch.ones_like(input)
# only keep the face features
face_features_image = torch.where(bg, white_image, self.to_gray(input))
self.debug_img_list.append(tensor2img(face_features_image, rgb2bgr=False))
# transform img before sending to eva-clip-vit
face_features_image = resize(face_features_image, self.clip_vision_model.image_size, InterpolationMode.BICUBIC)
face_features_image = normalize(face_features_image, self.eva_transform_mean, self.eva_transform_std)
id_cond_vit, id_vit_hidden = self.clip_vision_model(
face_features_image.to(self.weight_dtype), return_all_features=False, return_hidden=True, shuffle=False
)
id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True)
id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm)
id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1)
id_embedding = self.pulid_encoder(id_cond, id_vit_hidden)
if not cal_uncond:
return id_embedding, None
id_uncond = torch.zeros_like(id_cond)
id_vit_hidden_uncond = []
for layer_idx in range(0, len(id_vit_hidden)):
id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden[layer_idx]))
uncond_id_embedding = self.pulid_encoder(id_uncond, id_vit_hidden_uncond)
return id_embedding, uncond_id_embedding
|