File size: 9,331 Bytes
db6a3b7
3057b36
7d475c1
db6a3b7
 
690b53e
db6a3b7
9880f3d
7d475c1
db6a3b7
 
9880f3d
db6a3b7
 
9880f3d
db6a3b7
 
 
bd46f72
a898014
bd46f72
d7b1815
 
bd46f72
a898014
db6a3b7
 
 
 
 
 
 
a898014
db6a3b7
 
a898014
db894f7
a898014
 
db6a3b7
 
a898014
9880f3d
 
 
 
 
 
 
 
 
 
 
 
 
a898014
9880f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a898014
9880f3d
 
3057b36
a898014
db6a3b7
 
 
 
a898014
bd46f72
 
 
 
 
 
db6a3b7
 
 
 
 
bd46f72
 
db894f7
a898014
db894f7
bd46f72
 
 
 
 
 
 
 
 
 
 
7d475c1
15fe7bc
 
a898014
 
db6a3b7
7d475c1
a898014
9880f3d
db6a3b7
 
3057b36
9880f3d
db6a3b7
 
 
 
9880f3d
db6a3b7
 
 
 
 
 
a898014
690b53e
a898014
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
7d475c1
 
 
 
 
 
db6a3b7
 
 
bd46f72
 
 
 
 
 
690b53e
 
bd46f72
 
690b53e
 
db6a3b7
bd46f72
 
 
 
 
 
db6a3b7
 
 
 
7d475c1
db6a3b7
db894f7
a898014
2e78ab8
db6a3b7
 
 
 
 
 
 
 
 
2e7f188
a898014
db6a3b7
 
 
 
 
 
 
 
a898014
 
 
 
 
db6a3b7
 
 
 
a898014
2e78ab8
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
2e78ab8
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41cbb4a
db6a3b7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D

import os
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils


MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"

os.makedirs(TMP_DIR, exist_ok=True)


def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
    """
    Preprocess the input image.

    Args:
        image (Image.Image): The input image.

    Returns:
        str: uuid of the trial.
        Image.Image: The preprocessed image.
    """
    trial_id = str(uuid.uuid4())
    processed_image = pipeline.preprocess_image(image)
    processed_image.save(f"{TMP_DIR}/{trial_id}.png")
    return trial_id, processed_image


def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
        'trial_id': trial_id,
    }
    
    
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh, state['trial_id']


@spaces.GPU
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
    """
    Convert an image to a 3D model.

    Args:
        trial_id (str): The uuid of the trial.
        seed (int): The random seed.
        randomize_seed (bool): Whether to randomize the seed.
        ss_guidance_strength (float): The guidance strength for sparse structure generation.
        ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
        slat_guidance_strength (float): The guidance strength for structured latent generation.
        slat_sampling_steps (int): The number of sampling steps for structured latent generation.

    Returns:
        dict: The information of the generated 3D model.
        str: The path to the video of the 3D model.
    """
    if randomize_seed:
        seed = np.random.randint(0, MAX_SEED)
    outputs = pipeline.run(
        Image.open(f"{TMP_DIR}/{trial_id}.png"),
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    trial_id = uuid.uuid4()
    video_path = f"{TMP_DIR}/{trial_id}.mp4"
    os.makedirs(os.path.dirname(video_path), exist_ok=True)
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
    return state, video_path


@spaces.GPU
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
    """
    Extract a GLB file from the 3D model.

    Args:
        state (dict): The state of the generated 3D model.
        mesh_simplify (float): The mesh simplification factor.
        texture_size (int): The texture resolution.

    Returns:
        str: The path to the extracted GLB file.
    """
    gs, mesh, trial_id = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = f"{TMP_DIR}/{trial_id}.glb"
    glb.export(glb_path)
    return glb_path, glb_path


def activate_button() -> gr.Button:
    return gr.Button(interactive=True)


def deactivate_button() -> gr.Button:
    return gr.Button(interactive=False)


with gr.Blocks() as demo:
    gr.Markdown("""
    ## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
    * Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
    * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
    """)
    
    with gr.Row():
        with gr.Column():
            image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
            
            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                gr.Markdown("Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                gr.Markdown("Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)

            generate_btn = gr.Button("Generate")
            
            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            extract_glb_btn = gr.Button("Extract GLB", interactive=False)

        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
            download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
            
    trial_id = gr.Textbox(visible=False)
    output_buf = gr.State()

    # Example images at the bottom of the page
    with gr.Row():
        examples = gr.Examples(
            examples=[
                f'assets/example_image/{image}'
                for image in os.listdir("assets/example_image")
            ],
            inputs=[image_prompt],
            fn=preprocess_image,
            outputs=[trial_id, image_prompt],
            run_on_click=True,
            examples_per_page=64,
        )

    # Handlers
    image_prompt.upload(
        preprocess_image,
        inputs=[image_prompt],
        outputs=[trial_id, image_prompt],
    )
    image_prompt.clear(
        lambda: '',
        outputs=[trial_id],
    )

    generate_btn.click(
        image_to_3d,
        inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        outputs=[output_buf, video_output],
    ).then(
        activate_button,
        outputs=[extract_glb_btn],
    )

    video_output.clear(
        deactivate_button,
        outputs=[extract_glb_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        activate_button,
        outputs=[download_glb],
    )

    model_output.clear(
        deactivate_button,
        outputs=[download_glb],
    )
    

# Launch the Gradio app
if __name__ == "__main__":
    pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
    pipeline.cuda()
    pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))    # Preload rembg
    demo.launch()