Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
DEFAULT_TRIVEC_CONFIG = { | |
'dim': 8, | |
'rank': 8, | |
} | |
DEFAULT_VOXEL_CONFIG = { | |
'solid': False, | |
} | |
DEFAULT_DECOPOLY_CONFIG = { | |
'degree': 8, | |
'rank': 16, | |
} | |
class DfsOctree: | |
""" | |
Sparse Voxel Octree (SVO) implementation for PyTorch. | |
Using Depth-First Search (DFS) order to store the octree. | |
DFS order suits rendering and ray tracing. | |
The structure and data are separatedly stored. | |
Structure is stored as a continuous array, each element is a 3*32 bits descriptor. | |
|-----------------------------------------| | |
| 0:3 bits | 4:31 bits | | |
| leaf num | unused | | |
|-----------------------------------------| | |
| 0:31 bits | | |
| child ptr | | |
|-----------------------------------------| | |
| 0:31 bits | | |
| data ptr | | |
|-----------------------------------------| | |
Each element represents a non-leaf node in the octree. | |
The valid mask is used to indicate whether the children are valid. | |
The leaf mask is used to indicate whether the children are leaf nodes. | |
The child ptr is used to point to the first non-leaf child. Non-leaf children descriptors are stored continuously from the child ptr. | |
The data ptr is used to point to the data of leaf children. Leaf children data are stored continuously from the data ptr. | |
There are also auxiliary arrays to store the additional structural information to facilitate parallel processing. | |
- Position: the position of the octree nodes. | |
- Depth: the depth of the octree nodes. | |
Args: | |
depth (int): the depth of the octree. | |
""" | |
def __init__( | |
self, | |
depth, | |
aabb=[0,0,0,1,1,1], | |
sh_degree=2, | |
primitive='voxel', | |
primitive_config={}, | |
device='cuda', | |
): | |
self.max_depth = depth | |
self.aabb = torch.tensor(aabb, dtype=torch.float32, device=device) | |
self.device = device | |
self.sh_degree = sh_degree | |
self.active_sh_degree = sh_degree | |
self.primitive = primitive | |
self.primitive_config = primitive_config | |
self.structure = torch.tensor([[8, 1, 0]], dtype=torch.int32, device=self.device) | |
self.position = torch.zeros((8, 3), dtype=torch.float32, device=self.device) | |
self.depth = torch.zeros((8, 1), dtype=torch.uint8, device=self.device) | |
self.position[:, 0] = torch.tensor([0.25, 0.75, 0.25, 0.75, 0.25, 0.75, 0.25, 0.75], device=self.device) | |
self.position[:, 1] = torch.tensor([0.25, 0.25, 0.75, 0.75, 0.25, 0.25, 0.75, 0.75], device=self.device) | |
self.position[:, 2] = torch.tensor([0.25, 0.25, 0.25, 0.25, 0.75, 0.75, 0.75, 0.75], device=self.device) | |
self.depth[:, 0] = 1 | |
self.data = ['position', 'depth'] | |
self.param_names = [] | |
if primitive == 'voxel': | |
self.features_dc = torch.zeros((8, 1, 3), dtype=torch.float32, device=self.device) | |
self.features_ac = torch.zeros((8, (sh_degree+1)**2-1, 3), dtype=torch.float32, device=self.device) | |
self.data += ['features_dc', 'features_ac'] | |
self.param_names += ['features_dc', 'features_ac'] | |
if not primitive_config.get('solid', False): | |
self.density = torch.zeros((8, 1), dtype=torch.float32, device=self.device) | |
self.data.append('density') | |
self.param_names.append('density') | |
elif primitive == 'gaussian': | |
self.features_dc = torch.zeros((8, 1, 3), dtype=torch.float32, device=self.device) | |
self.features_ac = torch.zeros((8, (sh_degree+1)**2-1, 3), dtype=torch.float32, device=self.device) | |
self.opacity = torch.zeros((8, 1), dtype=torch.float32, device=self.device) | |
self.data += ['features_dc', 'features_ac', 'opacity'] | |
self.param_names += ['features_dc', 'features_ac', 'opacity'] | |
elif primitive == 'trivec': | |
self.trivec = torch.zeros((8, primitive_config['rank'], 3, primitive_config['dim']), dtype=torch.float32, device=self.device) | |
self.density = torch.zeros((8, primitive_config['rank']), dtype=torch.float32, device=self.device) | |
self.features_dc = torch.zeros((8, primitive_config['rank'], 1, 3), dtype=torch.float32, device=self.device) | |
self.features_ac = torch.zeros((8, primitive_config['rank'], (sh_degree+1)**2-1, 3), dtype=torch.float32, device=self.device) | |
self.density_shift = 0 | |
self.data += ['trivec', 'density', 'features_dc', 'features_ac'] | |
self.param_names += ['trivec', 'density', 'features_dc', 'features_ac'] | |
elif primitive == 'decoupoly': | |
self.decoupoly_V = torch.zeros((8, primitive_config['rank'], 3), dtype=torch.float32, device=self.device) | |
self.decoupoly_g = torch.zeros((8, primitive_config['rank'], primitive_config['degree']), dtype=torch.float32, device=self.device) | |
self.density = torch.zeros((8, primitive_config['rank']), dtype=torch.float32, device=self.device) | |
self.features_dc = torch.zeros((8, primitive_config['rank'], 1, 3), dtype=torch.float32, device=self.device) | |
self.features_ac = torch.zeros((8, primitive_config['rank'], (sh_degree+1)**2-1, 3), dtype=torch.float32, device=self.device) | |
self.density_shift = 0 | |
self.data += ['decoupoly_V', 'decoupoly_g', 'density', 'features_dc', 'features_ac'] | |
self.param_names += ['decoupoly_V', 'decoupoly_g', 'density', 'features_dc', 'features_ac'] | |
self.setup_functions() | |
def setup_functions(self): | |
self.density_activation = (lambda x: torch.exp(x - 2)) if self.primitive != 'trivec' else (lambda x: x) | |
self.opacity_activation = lambda x: torch.sigmoid(x - 6) | |
self.inverse_opacity_activation = lambda x: torch.log(x / (1 - x)) + 6 | |
self.color_activation = lambda x: torch.sigmoid(x) | |
def num_non_leaf_nodes(self): | |
return self.structure.shape[0] | |
def num_leaf_nodes(self): | |
return self.depth.shape[0] | |
def cur_depth(self): | |
return self.depth.max().item() | |
def occupancy(self): | |
return self.num_leaf_nodes / 8 ** self.cur_depth | |
def get_xyz(self): | |
return self.position | |
def get_depth(self): | |
return self.depth | |
def get_density(self): | |
if self.primitive == 'voxel' and self.voxel_config['solid']: | |
return torch.full((self.position.shape[0], 1), 1000, dtype=torch.float32, device=self.device) | |
return self.density_activation(self.density) | |
def get_opacity(self): | |
return self.opacity_activation(self.density) | |
def get_trivec(self): | |
return self.trivec | |
def get_decoupoly(self): | |
return F.normalize(self.decoupoly_V, dim=-1), self.decoupoly_g | |
def get_color(self): | |
return self.color_activation(self.colors) | |
def get_features(self): | |
if self.sh_degree == 0: | |
return self.features_dc | |
return torch.cat([self.features_dc, self.features_ac], dim=-2) | |
def state_dict(self): | |
ret = {'structure': self.structure, 'position': self.position, 'depth': self.depth, 'sh_degree': self.sh_degree, 'active_sh_degree': self.active_sh_degree, 'trivec_config': self.trivec_config, 'voxel_config': self.voxel_config, 'primitive': self.primitive} | |
if hasattr(self, 'density_shift'): | |
ret['density_shift'] = self.density_shift | |
for data in set(self.data + self.param_names): | |
if not isinstance(getattr(self, data), nn.Module): | |
ret[data] = getattr(self, data) | |
else: | |
ret[data] = getattr(self, data).state_dict() | |
return ret | |
def load_state_dict(self, state_dict): | |
keys = list(set(self.data + self.param_names + list(state_dict.keys()) + ['structure', 'position', 'depth'])) | |
for key in keys: | |
if key not in state_dict: | |
print(f"Warning: key {key} not found in the state_dict.") | |
continue | |
try: | |
if not isinstance(getattr(self, key), nn.Module): | |
setattr(self, key, state_dict[key]) | |
else: | |
getattr(self, key).load_state_dict(state_dict[key]) | |
except Exception as e: | |
print(e) | |
raise ValueError(f"Error loading key {key}.") | |
def gather_from_leaf_children(self, data): | |
""" | |
Gather the data from the leaf children. | |
Args: | |
data (torch.Tensor): the data to gather. The first dimension should be the number of leaf nodes. | |
""" | |
leaf_cnt = self.structure[:, 0] | |
leaf_cnt_masks = [leaf_cnt == i for i in range(1, 9)] | |
ret = torch.zeros((self.num_non_leaf_nodes,), dtype=data.dtype, device=self.device) | |
for i in range(8): | |
if leaf_cnt_masks[i].sum() == 0: | |
continue | |
start = self.structure[leaf_cnt_masks[i], 2] | |
for j in range(i+1): | |
ret[leaf_cnt_masks[i]] += data[start + j] | |
return ret | |
def gather_from_non_leaf_children(self, data): | |
""" | |
Gather the data from the non-leaf children. | |
Args: | |
data (torch.Tensor): the data to gather. The first dimension should be the number of leaf nodes. | |
""" | |
non_leaf_cnt = 8 - self.structure[:, 0] | |
non_leaf_cnt_masks = [non_leaf_cnt == i for i in range(1, 9)] | |
ret = torch.zeros_like(data, device=self.device) | |
for i in range(8): | |
if non_leaf_cnt_masks[i].sum() == 0: | |
continue | |
start = self.structure[non_leaf_cnt_masks[i], 1] | |
for j in range(i+1): | |
ret[non_leaf_cnt_masks[i]] += data[start + j] | |
return ret | |
def structure_control(self, mask): | |
""" | |
Control the structure of the octree. | |
Args: | |
mask (torch.Tensor): the mask to control the structure. 1 for subdivide, -1 for merge, 0 for keep. | |
""" | |
# Dont subdivide when the depth is the maximum. | |
mask[self.depth.squeeze() == self.max_depth] = torch.clamp_max(mask[self.depth.squeeze() == self.max_depth], 0) | |
# Dont merge when the depth is the minimum. | |
mask[self.depth.squeeze() == 1] = torch.clamp_min(mask[self.depth.squeeze() == 1], 0) | |
# Gather control mask | |
structre_ctrl = self.gather_from_leaf_children(mask) | |
structre_ctrl[structre_ctrl==-8] = -1 | |
new_leaf_num = self.structure[:, 0].clone() | |
# Modify the leaf num. | |
structre_valid = structre_ctrl >= 0 | |
new_leaf_num[structre_valid] -= structre_ctrl[structre_valid] # Add the new nodes. | |
structre_delete = structre_ctrl < 0 | |
merged_nodes = self.gather_from_non_leaf_children(structre_delete.int()) | |
new_leaf_num += merged_nodes # Delete the merged nodes. | |
# Update the structure array to allocate new nodes. | |
mem_offset = torch.zeros((self.num_non_leaf_nodes + 1,), dtype=torch.int32, device=self.device) | |
mem_offset.index_add_(0, self.structure[structre_valid, 1], structre_ctrl[structre_valid]) # Add the new nodes. | |
mem_offset[:-1] -= structre_delete.int() # Delete the merged nodes. | |
new_structre_idx = torch.arange(0, self.num_non_leaf_nodes + 1, dtype=torch.int32, device=self.device) + mem_offset.cumsum(0) | |
new_structure_length = new_structre_idx[-1].item() | |
new_structre_idx = new_structre_idx[:-1] | |
new_structure = torch.empty((new_structure_length, 3), dtype=torch.int32, device=self.device) | |
new_structure[new_structre_idx[structre_valid], 0] = new_leaf_num[structre_valid] | |
# Initialize the new nodes. | |
new_node_mask = torch.ones((new_structure_length,), dtype=torch.bool, device=self.device) | |
new_node_mask[new_structre_idx[structre_valid]] = False | |
new_structure[new_node_mask, 0] = 8 # Initialize to all leaf nodes. | |
new_node_num = new_node_mask.sum().item() | |
# Rebuild child ptr. | |
non_leaf_cnt = 8 - new_structure[:, 0] | |
new_child_ptr = torch.cat([torch.zeros((1,), dtype=torch.int32, device=self.device), non_leaf_cnt.cumsum(0)[:-1]]) | |
new_structure[:, 1] = new_child_ptr + 1 | |
# Rebuild data ptr with old data. | |
leaf_cnt = torch.zeros((new_structure_length,), dtype=torch.int32, device=self.device) | |
leaf_cnt.index_add_(0, new_structre_idx, self.structure[:, 0]) | |
old_data_ptr = torch.cat([torch.zeros((1,), dtype=torch.int32, device=self.device), leaf_cnt.cumsum(0)[:-1]]) | |
# Update the data array | |
subdivide_mask = mask == 1 | |
merge_mask = mask == -1 | |
data_valid = ~(subdivide_mask | merge_mask) | |
mem_offset = torch.zeros((self.num_leaf_nodes + 1,), dtype=torch.int32, device=self.device) | |
mem_offset.index_add_(0, old_data_ptr[new_node_mask], torch.full((new_node_num,), 8, dtype=torch.int32, device=self.device)) # Add data array for new nodes | |
mem_offset[:-1] -= subdivide_mask.int() # Delete data elements for subdivide nodes | |
mem_offset[:-1] -= merge_mask.int() # Delete data elements for merge nodes | |
mem_offset.index_add_(0, self.structure[structre_valid, 2], merged_nodes[structre_valid]) # Add data elements for merge nodes | |
new_data_idx = torch.arange(0, self.num_leaf_nodes + 1, dtype=torch.int32, device=self.device) + mem_offset.cumsum(0) | |
new_data_length = new_data_idx[-1].item() | |
new_data_idx = new_data_idx[:-1] | |
new_data = {data: torch.empty((new_data_length,) + getattr(self, data).shape[1:], dtype=getattr(self, data).dtype, device=self.device) for data in self.data} | |
for data in self.data: | |
new_data[data][new_data_idx[data_valid]] = getattr(self, data)[data_valid] | |
# Rebuild data ptr | |
leaf_cnt = new_structure[:, 0] | |
new_data_ptr = torch.cat([torch.zeros((1,), dtype=torch.int32, device=self.device), leaf_cnt.cumsum(0)[:-1]]) | |
new_structure[:, 2] = new_data_ptr | |
# Initialize the new data array | |
## For subdivide nodes | |
if subdivide_mask.sum() > 0: | |
subdivide_data_ptr = new_structure[new_node_mask, 2] | |
for data in self.data: | |
for i in range(8): | |
if data == 'position': | |
offset = torch.tensor([i // 4, (i // 2) % 2, i % 2], dtype=torch.float32, device=self.device) - 0.5 | |
scale = 2 ** (-1.0 - self.depth[subdivide_mask]) | |
new_data['position'][subdivide_data_ptr + i] = self.position[subdivide_mask] + offset * scale | |
elif data == 'depth': | |
new_data['depth'][subdivide_data_ptr + i] = self.depth[subdivide_mask] + 1 | |
elif data == 'opacity': | |
new_data['opacity'][subdivide_data_ptr + i] = self.inverse_opacity_activation(torch.sqrt(self.opacity_activation(self.opacity[subdivide_mask]))) | |
elif data == 'trivec': | |
offset = torch.tensor([i // 4, (i // 2) % 2, i % 2], dtype=torch.float32, device=self.device) * 0.5 | |
coord = (torch.linspace(0, 0.5, self.trivec.shape[-1], dtype=torch.float32, device=self.device)[None] + offset[:, None]).reshape(1, 3, self.trivec.shape[-1], 1) | |
axis = torch.linspace(0, 1, 3, dtype=torch.float32, device=self.device).reshape(1, 3, 1, 1).repeat(1, 1, self.trivec.shape[-1], 1) | |
coord = torch.stack([coord, axis], dim=3).reshape(1, 3, self.trivec.shape[-1], 2).expand(self.trivec[subdivide_mask].shape[0], -1, -1, -1) * 2 - 1 | |
new_data['trivec'][subdivide_data_ptr + i] = F.grid_sample(self.trivec[subdivide_mask], coord, align_corners=True) | |
else: | |
new_data[data][subdivide_data_ptr + i] = getattr(self, data)[subdivide_mask] | |
## For merge nodes | |
if merge_mask.sum() > 0: | |
merge_data_ptr = torch.empty((merged_nodes.sum().item(),), dtype=torch.int32, device=self.device) | |
merge_nodes_cumsum = torch.cat([torch.zeros((1,), dtype=torch.int32, device=self.device), merged_nodes.cumsum(0)[:-1]]) | |
for i in range(8): | |
merge_data_ptr[merge_nodes_cumsum[merged_nodes > i] + i] = new_structure[new_structre_idx[merged_nodes > i], 2] + i | |
old_merge_data_ptr = self.structure[structre_delete, 2] | |
for data in self.data: | |
if data == 'position': | |
scale = 2 ** (1.0 - self.depth[old_merge_data_ptr]) | |
new_data['position'][merge_data_ptr] = ((self.position[old_merge_data_ptr] + 0.5) / scale).floor() * scale + 0.5 * scale - 0.5 | |
elif data == 'depth': | |
new_data['depth'][merge_data_ptr] = self.depth[old_merge_data_ptr] - 1 | |
elif data == 'opacity': | |
new_data['opacity'][subdivide_data_ptr + i] = self.inverse_opacity_activation(self.opacity_activation(self.opacity[subdivide_mask])**2) | |
elif data == 'trivec': | |
new_data['trivec'][merge_data_ptr] = self.trivec[old_merge_data_ptr] | |
else: | |
new_data[data][merge_data_ptr] = getattr(self, data)[old_merge_data_ptr] | |
# Update the structure and data array | |
self.structure = new_structure | |
for data in self.data: | |
setattr(self, data, new_data[data]) | |
# Save data array control temp variables | |
self.data_rearrange_buffer = { | |
'subdivide_mask': subdivide_mask, | |
'merge_mask': merge_mask, | |
'data_valid': data_valid, | |
'new_data_idx': new_data_idx, | |
'new_data_length': new_data_length, | |
'new_data': new_data | |
} | |