import gradio as gr import spaces from gradio_litmodel3d import LitModel3D import os from typing import * import numpy as np import imageio import uuid from PIL import Image from trellis.pipelines import TrellisImageTo3DPipeline from trellis.utils import render_utils, postprocessing_utils def preprocess_image(image: Image.Image) -> Image.Image: """ Preprocess the input image. Args: image (Image.Image): The input image. Returns: Image.Image: The preprocessed image. """ return pipeline.preprocess_image(image) @spaces.GPU def image_to_3d(image: Image.Image) -> Tuple[dict, str]: """ Convert an image to a 3D model. Args: image (Image.Image): The input image. Returns: dict: The information of the generated 3D model. str: The path to the video of the 3D model. """ outputs = pipeline(image, formats=["gaussian", "mesh"], preprocess_image=False) video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] model_id = uuid.uuid4() video_path = f"/tmp/Trellis-demo/{model_id}.mp4" os.makedirs(os.path.dirname(video_path), exist_ok=True) imageio.mimsave(video_path, video, fps=15) model = {'gaussian': outputs['gaussian'][0], 'mesh': outputs['mesh'][0], 'model_id': model_id} return model, video_path @spaces.GPU def extract_glb(model: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]: """ Extract a GLB file from the 3D model. Args: model (dict): The generated 3D model. mesh_simplify (float): The mesh simplification factor. texture_size (int): The texture resolution. Returns: str: The path to the extracted GLB file. """ glb = postprocessing_utils.to_glb(model['gaussian'], model['mesh'], simplify=mesh_simplify, texture_size=texture_size) glb_path = f"/tmp/Trellis-demo/{model['model_id']}.glb" glb.export(glb_path) return glb_path, glb_path def activate_button() -> gr.Button: return gr.Button(interactive=True) def deactivate_button() -> gr.Button: return gr.Button(interactive=False) with gr.Blocks() as demo: gr.Markdown(""" ## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/) * Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background. * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it. """) with gr.Row(): with gr.Column(): image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300) generate_btn = gr.Button("Generate") gr.Markdown("GLB Extraction Parameters:") mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) extract_glb_btn = gr.Button("Extract GLB", interactive=False) with gr.Column(): video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300) download_glb = gr.DownloadButton(label="Download GLB", interactive=False) # Example images at the bottom of the page with gr.Row(): examples = gr.Examples( examples=[ f'assets/example_image/{image}' for image in os.listdir("assets/example_image") ], inputs=[image_prompt], fn=lambda image: preprocess_image(image), outputs=[image_prompt], run_on_click=True, examples_per_page=64, ) model = gr.State() # Handlers image_prompt.upload( preprocess_image, inputs=[image_prompt], outputs=[image_prompt], ) generate_btn.click( image_to_3d, inputs=[image_prompt], outputs=[model, video_output], ).then( activate_button, outputs=[extract_glb_btn], ) video_output.clear( deactivate_button, outputs=[extract_glb_btn], ) extract_glb_btn.click( extract_glb, inputs=[model, mesh_simplify, texture_size], outputs=[model_output, download_glb], ).then( activate_button, outputs=[download_glb], ) model_output.clear( deactivate_button, outputs=[download_glb], ) # Launch the Gradio app if __name__ == "__main__": pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") pipeline.cuda() demo.launch()