|
|
|
import torch |
|
from transformers import pipeline |
|
|
|
from PIL import Image |
|
|
|
import matplotlib.pyplot as plt |
|
import matplotlib.patches as patches |
|
|
|
from random import choice |
|
import io |
|
|
|
detector50 = pipeline(model="facebook/detr-resnet-50") |
|
|
|
detector101 = pipeline(model="facebook/detr-resnet-101") |
|
|
|
|
|
import gradio as gr |
|
|
|
COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff", |
|
"#7f7fff", "#7fbfff", "#7fffff", "#7fffbf", |
|
"#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"] |
|
|
|
fdic = { |
|
"family" : "Impact", |
|
"style" : "italic", |
|
"size" : 15, |
|
"color" : "yellow", |
|
"weight" : "bold" |
|
} |
|
|
|
|
|
def get_figure(in_pil_img, in_results): |
|
plt.figure(figsize=(16, 10)) |
|
plt.imshow(in_pil_img) |
|
|
|
ax = plt.gca() |
|
|
|
for prediction in in_results: |
|
selected_color = choice(COLORS) |
|
|
|
x, y = prediction['box']['xmin'], prediction['box']['ymin'], |
|
w, h = prediction['box']['xmax'] - prediction['box']['xmin'], prediction['box']['ymax'] - prediction['box']['ymin'] |
|
|
|
ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3)) |
|
ax.text(x, y, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", fontdict=fdic) |
|
|
|
plt.axis("off") |
|
|
|
return plt.gcf() |
|
|
|
|
|
def infer(model, in_pil_img): |
|
|
|
results = None |
|
if model == "detr-resnet-101": |
|
results = detector101(in_pil_img) |
|
else: |
|
results = detector50(in_pil_img) |
|
|
|
figure = get_figure(in_pil_img, results) |
|
|
|
buf = io.BytesIO() |
|
figure.savefig(buf, bbox_inches='tight') |
|
buf.seek(0) |
|
output_pil_img = Image.open(buf) |
|
|
|
return output_pil_img |
|
|
|
|
|
with gr.Blocks(title="DETR Object Detection - ClassCat", |
|
css=".gradio-container {background:lightyellow;}" |
|
) as demo: |
|
|
|
|
|
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">DETR Object Detection</div>""") |
|
|
|
gr.HTML("""<h4 style="color:navy;">1. Select a model.</h4>""") |
|
|
|
model = gr.Radio(["detr-resnet-50", "detr-resnet-101"], value="detr-resnet-50", label="Select a model") |
|
|
|
gr.HTML("""<br/>""") |
|
gr.HTML("""<h4 style="color:navy;">2-a. Select an example by clicking a thumbnail below.</h4>""") |
|
gr.HTML("""<h4 style="color:navy;">2-b. Or upload an image by clicking on the canvas.</h4>""") |
|
|
|
with gr.Row(): |
|
input_image = gr.Image(label="Input image", type="pil") |
|
output_image = gr.Image(label="Output image with predicted instances", type="pil") |
|
|
|
gr.Examples(['samples/cats.jpg', 'samples/detectron2.png', 'samples/cat.jpg', 'samples/hotdog.jpg'], inputs=input_image) |
|
|
|
gr.HTML("""<br/>""") |
|
gr.HTML("""<h4 style="color:navy;">3. Then, click "Infer" button to predict object instances. It will take about 15-20 seconds (on cpu)</h4>""") |
|
|
|
send_btn = gr.Button("Infer") |
|
send_btn.click(fn=infer, inputs=[model, input_image], outputs=[output_image]) |
|
|
|
gr.HTML("""<br/>""") |
|
gr.HTML("""<h4 style="color:navy;">Reference</h4>""") |
|
gr.HTML("""<ul>""") |
|
gr.HTML("""<li><a href="https://colab.research.google.com/github/facebookresearch/detr/blob/colab/notebooks/detr_attention.ipynb" target="_blank">Hands-on tutorial for DETR</a>""") |
|
gr.HTML("""</ul>""") |
|
|
|
|
|
|
|
demo.launch(debug=True) |
|
|
|
|
|
|
|
|