qsitj commited on
Commit
cc27b8c
·
verified ·
1 Parent(s): 86a0e3c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -32,7 +32,7 @@ detector50 = pipeline(model="facebook/detr-resnet-50")
32
  detector101 = pipeline(model="facebook/detr-resnet-101")
33
 
34
  if torch.cuda.is_available():
35
- print("##############------------use cuda!------------#################")
36
  detector50.model.to('cuda')
37
  detector101.model.to('cuda')
38
 
@@ -59,7 +59,7 @@ def query_data(model, in_pil_img: Image.Image):
59
  results = detector101(in_pil_img)
60
  else:
61
  results = detector50(in_pil_img)
62
- print(f"检测结果:{results}")
63
  return results
64
 
65
 
@@ -69,7 +69,7 @@ def get_figure(in_pil_img):
69
  plt.imshow(in_pil_img)
70
 
71
  ax = plt.gca()
72
- print(f"图像尺寸:{in_pil_img.size}")
73
  in_results = query_data(model, in_pil_img)
74
 
75
  for prediction in in_results:
@@ -80,7 +80,7 @@ def get_figure(in_pil_img):
80
 
81
  ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3))
82
  ax.text(x, y, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", fontdict=fdic)
83
- print(f"x: {x}, y: {y}, w: {w}, h: {h}, label: {prediction['label']}, score: {prediction['score']}")
84
 
85
  plt.axis("off")
86
 
@@ -88,7 +88,7 @@ def get_figure(in_pil_img):
88
 
89
 
90
  def process_single_frame(frame):
91
- print(f"开始处理单帧")
92
  # 将 BGR 转换为 RGB
93
  rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
94
 
@@ -107,7 +107,7 @@ def process_single_frame(frame):
107
 
108
 
109
  def infer_video(input_video_path):
110
- print(f"开始处理视频 {input_video_path}")
111
  with tempfile.TemporaryDirectory() as tmp_dir:
112
  # output_video_path = Path(tmp_dir) / "output.mp4"
113
  cap = cv2.VideoCapture(input_video_path)
 
32
  detector101 = pipeline(model="facebook/detr-resnet-101")
33
 
34
  if torch.cuda.is_available():
35
+ # print("##############------------use cuda!------------#################")
36
  detector50.model.to('cuda')
37
  detector101.model.to('cuda')
38
 
 
59
  results = detector101(in_pil_img)
60
  else:
61
  results = detector50(in_pil_img)
62
+ # print(f"检测结果:{results}")
63
  return results
64
 
65
 
 
69
  plt.imshow(in_pil_img)
70
 
71
  ax = plt.gca()
72
+ # print(f"图像尺寸:{in_pil_img.size}")
73
  in_results = query_data(model, in_pil_img)
74
 
75
  for prediction in in_results:
 
80
 
81
  ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3))
82
  ax.text(x, y, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", fontdict=fdic)
83
+ # print(f"x: {x}, y: {y}, w: {w}, h: {h}, label: {prediction['label']}, score: {prediction['score']}")
84
 
85
  plt.axis("off")
86
 
 
88
 
89
 
90
  def process_single_frame(frame):
91
+ # print(f"开始处理单帧")
92
  # 将 BGR 转换为 RGB
93
  rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
94
 
 
107
 
108
 
109
  def infer_video(input_video_path):
110
+ # print(f"开始处理视频 {input_video_path}")
111
  with tempfile.TemporaryDirectory() as tmp_dir:
112
  # output_video_path = Path(tmp_dir) / "output.mp4"
113
  cap = cv2.VideoCapture(input_video_path)