import torch from transformers import pipeline from PIL import Image import matplotlib.pyplot as plt import matplotlib.patches as patches from random import choice import io detector50 = pipeline(model="facebook/detr-resnet-50") detector101 = pipeline(model="facebook/detr-resnet-101") import gradio as gr COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff", "#7f7fff", "#7fbfff", "#7fffff", "#7fffbf", "#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"] fdic = { "family" : "Impact", "style" : "italic", "size" : 15, "color" : "yellow", "weight" : "bold" } def get_figure(in_pil_img, in_results): plt.figure(figsize=(16, 10)) plt.imshow(in_pil_img) #pyplot.gcf() ax = plt.gca() for prediction in in_results: selected_color = choice(COLORS) x, y = prediction['box']['xmin'], prediction['box']['ymin'], w, h = prediction['box']['xmax'] - prediction['box']['xmin'], prediction['box']['ymax'] - prediction['box']['ymin'] ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3)) ax.text(x, y, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", fontdict=fdic) plt.axis("off") return plt.gcf() def infer(model, in_pil_img): results = None if model == "detr-resnet-101": results = detector101(in_pil_img) else: results = detector50(in_pil_img) figure = get_figure(in_pil_img, results) buf = io.BytesIO() figure.savefig(buf, bbox_inches='tight') buf.seek(0) output_pil_img = Image.open(buf) return output_pil_img with gr.Blocks(title="DETR Object Detection - ClassCat", css=".gradio-container {background:lightyellow;}" ) as demo: #sample_index = gr.State([]) gr.HTML("""
DETR Object Detection
""") gr.HTML("""

1. Select a model.

""") model = gr.Radio(["detr-resnet-50", "detr-resnet-101"], value="detr-resnet-50", label="Select a model") gr.HTML("""
""") gr.HTML("""

2-a. Select an example by clicking a thumbnail below.

""") gr.HTML("""

2-b. Or upload an image by clicking on the canvas.

""") with gr.Row(): input_image = gr.Image(label="Input image", type="pil") output_image = gr.Image(label="Output image with predicted instances", type="pil") gr.Examples(['samples/cats.jpg', 'samples/detectron2.png', 'samples/cat.jpg', 'samples/hotdog.jpg'], inputs=input_image) gr.HTML("""
""") gr.HTML("""

3. Then, click "Infer" button to predict object instances. It will take about 15-20 seconds (on cpu)

""") send_btn = gr.Button("Infer") send_btn.click(fn=infer, inputs=[model, input_image], outputs=[output_image]) gr.HTML("""
""") gr.HTML("""

Reference

""") gr.HTML("""""") #demo.queue() demo.launch(debug=True) ### EOF ###