Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,374 Bytes
c509e76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import os
import cv2
import time
import random
import datetime
import argparse
import numpy as np
from tqdm import tqdm
from piq import ssim,psnr
from itertools import cycle
import torch
import torch.nn as nn
from torch.utils import data
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from utils import dict2string,mkdir,get_lr,torch2cvimg,second2hours
from loaders import docres_loader
from models import restormer_arch
def seed_torch(seed=1029):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
#torch.use_deterministic_algorithms(True)
# seed_torch()
def getBasecoord(h,w):
base_coord0 = np.tile(np.arange(h).reshape(h,1),(1,w)).astype(np.float32)
base_coord1 = np.tile(np.arange(w).reshape(1,w),(h,1)).astype(np.float32)
base_coord = np.concatenate((np.expand_dims(base_coord1,-1),np.expand_dims(base_coord0,-1)),-1)
return base_coord
def train(args):
## DDP init
dist.init_process_group(backend='nccl',init_method='env://',timeout=datetime.timedelta(seconds=36000))
torch.cuda.set_device(args.local_rank)
device = torch.device('cuda',args.local_rank)
torch.cuda.manual_seed_all(42)
### Log file:
mkdir(args.logdir)
mkdir(os.path.join(args.logdir,args.experiment_name))
log_file_path=os.path.join(args.logdir,args.experiment_name,'log.txt')
log_file=open(log_file_path,'a')
log_file.write('\n--------------- '+args.experiment_name+' ---------------\n')
log_file.close()
### Setup tensorboard for visualization
if args.tboard:
writer = SummaryWriter(os.path.join(args.logdir,args.experiment_name,'runs'),args.experiment_name)
### Setup Dataloader
datasets_setting = [
{'task':'deblurring','ratio':1,'im_path':'/home/jiaxin/Training_Data/DocRes_data/train/deblurring/','json_paths':['/home/jiaxin/Training_Data/DocRes_data/train/deblurring/tdd/train.json']},
{'task':'dewarping','ratio':1,'im_path':'/home/jiaxin/Training_Data/DocRes_data/train/dewarping/','json_paths':['/home/jiaxin/Training_Data/DocRes_data/train/dewarping/doc3d/train_1_19.json']},
{'task':'binarization','ratio':1,'im_path':'/home/jiaxin/Training_Data/DocRes_data/train/binarization/','json_paths':['/home/jiaxin/Training_Data/DocRes_data/train/binarization/train.json']},
{'task':'deshadowing','ratio':1,'im_path':'/home/jiaxin/Training_Data/DocRes_data/train/deshadowing/','json_paths':['/home/jiaxin/Training_Data/DocRes_data/train/deshadowing/train.json']},
{'task':'appearance','ratio':1,'im_path':'/home/jiaxin/Training_Data/DocRes_data/train/appearance/','json_paths':['/home/jiaxin/Training_Data/DocRes_data/train/appearance/trainv2.json']}
]
ratios = [dataset_setting['ratio'] for dataset_setting in datasets_setting]
datasets = [docres_loader.DocResTrainDataset(dataset=dataset_setting,img_size=args.im_size) for dataset_setting in datasets_setting]
trainloaders = [{'task':datasets_setting[i],'loader':data.DataLoader(dataset=datasets[i], sampler=DistributedSampler(datasets[i]), batch_size=args.batch_size, num_workers=2, pin_memory=True,drop_last=True),'iter_loader':iter(data.DataLoader(dataset=datasets[i], sampler=DistributedSampler(datasets[i]), batch_size=args.batch_size, num_workers=2, pin_memory=True,drop_last=True))} for i in range(len(datasets))]
### test loader
# for i in tqdm(range(args.total_iter)):
# loader_index = random.choices(list(range(len(trainloaders))),ratios)[0]
# in_im,gt_im = next(trainloaders[loader_index]['iter_loader'])
### Setup Model
model = restormer_arch.Restormer(
inp_channels=6,
out_channels=3,
dim = 48,
num_blocks = [2,3,3,4],
num_refinement_blocks = 4,
heads = [1,2,4,8],
ffn_expansion_factor = 2.66,
bias = False,
LayerNorm_type = 'WithBias',
dual_pixel_task = True
)
model=DDP(model.cuda(),device_ids=[args.local_rank],output_device=args.local_rank)
### Optimizer
optimizer= torch.optim.AdamW(model.parameters(),lr=args.l_rate,weight_decay=5e-4)
### LR Scheduler
sched = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.total_iter, eta_min=1e-6, last_epoch=-1)
### load checkpoint
iter_start=0
if args.resume is not None:
print("Loading model and optimizer from checkpoint '{}'".format(args.resume))
x = checkpoint['model_state']
model.load_state_dict(x,strict=False)
iter_start=checkpoint['iter']
print("Loaded checkpoint '{}' (iter {})".format(args.resume, iter_start))
###-----------------------------------------Training-----------------------------------------
##initialize
scaler = torch.cuda.amp.GradScaler()
loss_dict = {}
total_step = 0
l2 = nn.MSELoss()
l1 = nn.L1Loss()
ce = nn.CrossEntropyLoss()
bce = nn.BCEWithLogitsLoss()
m = nn.Sigmoid()
best = 0
best_ce = 999
## total_steps
for iters in range(iter_start,args.total_iter):
start_time = time.time()
loader_index = random.choices(list(range(len(trainloaders))),ratios)[0]
try:
in_im,gt_im = next(trainloaders[loader_index]['iter_loader'])
except StopIteration:
trainloaders[loader_index]['iter_loader']=iter(trainloaders[loader_index]['loader'])
in_im,gt_im = next(trainloaders[loader_index]['iter_loader'])
in_im = in_im.float().cuda()
gt_im = gt_im.float().cuda()
binarization_loss,appearance_loss,dewarping_loss,deblurring_loss,deshadowing_loss = 0,0,0,0,0
with torch.cuda.amp.autocast():
pred_im = model(in_im,trainloaders[loader_index]['task']['task'])
if trainloaders[loader_index]['task']['task'] == 'binarization':
gt_im = gt_im.long()
binarization_loss = ce(pred_im[:,:2,:,:], gt_im[:,0,:,:])
loss = binarization_loss
elif trainloaders[loader_index]['task']['task'] == 'dewarping':
dewarping_loss = l1(pred_im[:,:2,:,:], gt_im[:,:2,:,:])
loss = dewarping_loss
elif trainloaders[loader_index]['task']['task'] == 'appearance':
appearance_loss = l1(pred_im, gt_im)
loss = appearance_loss
elif trainloaders[loader_index]['task']['task'] == 'deblurring':
deblurring_loss = l1(pred_im, gt_im)
loss = deblurring_loss
elif trainloaders[loader_index]['task']['task'] == 'deshadowing':
deshadowing_loss = l1(pred_im, gt_im)
loss = deshadowing_loss
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
loss_dict['dew_loss']=dewarping_loss.item() if isinstance(dewarping_loss,torch.Tensor) else 0
loss_dict['app_loss']=appearance_loss.item() if isinstance(appearance_loss,torch.Tensor) else 0
loss_dict['des_loss']=deshadowing_loss.item() if isinstance(deshadowing_loss,torch.Tensor) else 0
loss_dict['deb_loss']=deblurring_loss.item() if isinstance(deblurring_loss,torch.Tensor) else 0
loss_dict['bin_loss']=binarization_loss.item() if isinstance(binarization_loss,torch.Tensor) else 0
end_time = time.time()
duration = end_time-start_time
## log
if (iters+1) % 10 == 0:
## print
print('iters [{}/{}] -- '.format(iters+1,args.total_iter)+dict2string(loss_dict)+' --lr {:6f}'.format(get_lr(optimizer))+' -- time {}'.format(second2hours(duration*(args.total_iter-iters))))
## tbord
if args.tboard:
for key,value in loss_dict.items():
writer.add_scalar('Train '+key+'/Iterations', value, total_step)
## logfile
with open(log_file_path,'a') as f:
f.write('iters [{}/{}] -- '.format(iters+1,args.total_iter)+dict2string(loss_dict)+' --lr {:6f}'.format(get_lr(optimizer))+' -- time {}'.format(second2hours(duration*(args.total_iter-iters)))+'\n')
if (iters+1) % 5000 == 0:
state = {'iters': iters+1,
'model_state': model.state_dict(),
'optimizer_state' : optimizer.state_dict(),}
if not os.path.exists(os.path.join(args.logdir,args.experiment_name)):
os.system('mkdir ' + os.path.join(args.logdir,args.experiment_name))
if torch.distributed.get_rank()==0:
torch.save(state, os.path.join(args.logdir,args.experiment_name,"{}.pkl".format(iters+1)))
sched.step()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--im_size', nargs='?', type=int, default=256,
help='Height of the input image')
parser.add_argument('--total_iter', nargs='?', type=int, default=100000,
help='# of the epochs')
parser.add_argument('--batch_size', nargs='?', type=int, default=10,
help='Batch Size')
parser.add_argument('--l_rate', nargs='?', type=float, default=2e-4,
help='Learning Rate')
parser.add_argument('--resume', nargs='?', type=str, default=None,
help='Path to previous saved model to restart from')
parser.add_argument('--logdir', nargs='?', type=str, default='./checkpoints/',
help='Path to store the loss logs')
parser.add_argument('--tboard', dest='tboard', action='store_true',
help='Enable visualization(s) on tensorboard | False by default')
parser.add_argument('--local_rank',type=int,default=0,metavar='N')
parser.add_argument('--experiment_name', nargs='?', type=str,default='experiment_name',
help='the name of this experiment')
parser.set_defaults(tboard=False)
args = parser.parse_args()
train(args) |