File size: 11,036 Bytes
4d657e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c7d09
4d657e7
 
 
 
 
 
 
 
e7c7d09
4d657e7
 
e7c7d09
4d657e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c7d09
4d657e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c7d09
4d657e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c7d09
4d657e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c7d09
4d657e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c7d09
4d657e7
 
 
 
 
 
e7c7d09
4d657e7
e7c7d09
4d657e7
 
 
 
 
 
 
 
 
 
 
 
e7c7d09
4d657e7
 
 
 
 
 
 
e7c7d09
4d657e7
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c7d09
4d657e7
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c7d09
4d657e7
 
 
 
 
 
 
 
 
 
e7c7d09
4d657e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c7d09
4d657e7
 
 
e7c7d09
4d657e7
 
 
 
 
 
 
 
e7c7d09
4d657e7
e7c7d09
4d657e7
e7c7d09
4d657e7
e7c7d09
4d657e7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import sys
import cv2
import utils
import numpy as np

import torch
from PIL import Image

from utils import convert_state_dict
from models import restormer_arch
from data.preprocess.crop_merge_image import stride_integral

sys.path.append("./data/MBD/")
from data.MBD.infer import net1_net2_infer_single_im


def dewarp_prompt(img):
    mask = net1_net2_infer_single_im(img, "data/MBD/checkpoint/mbd.pkl")
    base_coord = utils.getBasecoord(256, 256) / 256
    img[mask == 0] = 0
    mask = cv2.resize(mask, (256, 256)) / 255
    return img, np.concatenate((base_coord, np.expand_dims(mask, -1)), -1)


def deshadow_prompt(img):
    h, w = img.shape[:2]
    # img = cv2.resize(img,(128,128))
    img = cv2.resize(img, (1024, 1024))
    rgb_planes = cv2.split(img)
    result_planes = []
    result_norm_planes = []
    bg_imgs = []
    for plane in rgb_planes:
        dilated_img = cv2.dilate(plane, np.ones((7, 7), np.uint8))
        bg_img = cv2.medianBlur(dilated_img, 21)
        bg_imgs.append(bg_img)
        diff_img = 255 - cv2.absdiff(plane, bg_img)
        norm_img = cv2.normalize(
            diff_img,
            None,
            alpha=0,
            beta=255,
            norm_type=cv2.NORM_MINMAX,
            dtype=cv2.CV_8UC1,
        )
        result_planes.append(diff_img)
        result_norm_planes.append(norm_img)
    bg_imgs = cv2.merge(bg_imgs)
    bg_imgs = cv2.resize(bg_imgs, (w, h))
    # result = cv2.merge(result_planes)
    result_norm = cv2.merge(result_norm_planes)
    result_norm[result_norm == 0] = 1
    shadow_map = np.clip(
        img.astype(float) / result_norm.astype(float) * 255, 0, 255
    ).astype(np.uint8)
    shadow_map = cv2.resize(shadow_map, (w, h))
    shadow_map = cv2.cvtColor(shadow_map, cv2.COLOR_BGR2GRAY)
    shadow_map = cv2.cvtColor(shadow_map, cv2.COLOR_GRAY2BGR)
    # return shadow_map
    return bg_imgs


def deblur_prompt(img):
    x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
    y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
    absX = cv2.convertScaleAbs(x)  # 转回uint8
    absY = cv2.convertScaleAbs(y)
    high_frequency = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
    high_frequency = cv2.cvtColor(high_frequency, cv2.COLOR_BGR2GRAY)
    high_frequency = cv2.cvtColor(high_frequency, cv2.COLOR_GRAY2BGR)
    return high_frequency


def appearance_prompt(img):
    h, w = img.shape[:2]
    # img = cv2.resize(img,(128,128))
    img = cv2.resize(img, (1024, 1024))
    rgb_planes = cv2.split(img)
    result_planes = []
    result_norm_planes = []
    for plane in rgb_planes:
        dilated_img = cv2.dilate(plane, np.ones((7, 7), np.uint8))
        bg_img = cv2.medianBlur(dilated_img, 21)
        diff_img = 255 - cv2.absdiff(plane, bg_img)
        norm_img = cv2.normalize(
            diff_img,
            None,
            alpha=0,
            beta=255,
            norm_type=cv2.NORM_MINMAX,
            dtype=cv2.CV_8UC1,
        )
        result_planes.append(diff_img)
        result_norm_planes.append(norm_img)
    result_norm = cv2.merge(result_norm_planes)
    result_norm = cv2.resize(result_norm, (w, h))
    return result_norm


def binarization_promptv2(img):
    result, thresh = utils.SauvolaModBinarization(img)
    thresh = thresh.astype(np.uint8)
    result[result > 155] = 255
    result[result <= 155] = 0

    x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
    y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
    absX = cv2.convertScaleAbs(x)  # 转回uint8
    absY = cv2.convertScaleAbs(y)
    high_frequency = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
    high_frequency = cv2.cvtColor(high_frequency, cv2.COLOR_BGR2GRAY)
    return np.concatenate(
        (
            np.expand_dims(thresh, -1),
            np.expand_dims(high_frequency, -1),
            np.expand_dims(result, -1),
        ),
        -1,
    )


def dewarping(model, im_org, device):
    INPUT_SIZE = 256
    im_masked, prompt_org = dewarp_prompt(im_org.copy())

    h, w = im_masked.shape[:2]
    im_masked = im_masked.copy()
    im_masked = cv2.resize(im_masked, (INPUT_SIZE, INPUT_SIZE))
    im_masked = im_masked / 255.0
    im_masked = torch.from_numpy(im_masked.transpose(2, 0, 1)).unsqueeze(0)
    im_masked = im_masked.float().to(device)

    prompt = torch.from_numpy(prompt_org.transpose(2, 0, 1)).unsqueeze(0)
    prompt = prompt.float().to(device)

    in_im = torch.cat((im_masked, prompt), dim=1)

    # inference
    base_coord = utils.getBasecoord(INPUT_SIZE, INPUT_SIZE) / INPUT_SIZE
    model = model.float()
    with torch.no_grad():
        pred = model(in_im)
        pred = pred[0][:2].permute(1, 2, 0).cpu().numpy()
        pred = pred + base_coord
    ## smooth
    for i in range(15):
        pred = cv2.blur(pred, (3, 3), borderType=cv2.BORDER_REPLICATE)
    pred = cv2.resize(pred, (w, h)) * (w, h)
    pred = pred.astype(np.float32)
    out_im = cv2.remap(im_org, pred[:, :, 0], pred[:, :, 1], cv2.INTER_LINEAR)

    prompt_org = (prompt_org * 255).astype(np.uint8)
    prompt_org = cv2.resize(prompt_org, im_org.shape[:2][::-1])

    return prompt_org[:, :, 0], prompt_org[:, :, 1], prompt_org[:, :, 2], out_im


def appearance(model, im_org, device):
    MAX_SIZE = 1600
    # obtain im and prompt
    h, w = im_org.shape[:2]
    prompt = appearance_prompt(im_org)
    in_im = np.concatenate((im_org, prompt), -1)

    # constrain the max resolution
    if max(w, h) < MAX_SIZE:
        in_im, padding_h, padding_w = stride_integral(in_im, 8)
    else:
        in_im = cv2.resize(in_im, (MAX_SIZE, MAX_SIZE))

    # normalize
    in_im = in_im / 255.0
    in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)

    # inference
    in_im = in_im.half().to(device)
    model = model.half()
    with torch.no_grad():
        pred = model(in_im)
        pred = torch.clamp(pred, 0, 1)
        pred = pred[0].permute(1, 2, 0).cpu().numpy()
        pred = (pred * 255).astype(np.uint8)

        if max(w, h) < MAX_SIZE:
            out_im = pred[padding_h:, padding_w:]
        else:
            pred[pred == 0] = 1
            shadow_map = cv2.resize(im_org, (MAX_SIZE, MAX_SIZE)).astype(
                float
            ) / pred.astype(float)
            shadow_map = cv2.resize(shadow_map, (w, h))
            shadow_map[shadow_map == 0] = 0.00001
            out_im = np.clip(im_org.astype(float) / shadow_map, 0, 255).astype(np.uint8)

    return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im


def deshadowing(model, im_org, device):
    MAX_SIZE = 1600
    # obtain im and prompt
    h, w = im_org.shape[:2]
    prompt = deshadow_prompt(im_org)
    in_im = np.concatenate((im_org, prompt), -1)

    # constrain the max resolution
    if max(w, h) < MAX_SIZE:
        in_im, padding_h, padding_w = stride_integral(in_im, 8)
    else:
        in_im = cv2.resize(in_im, (MAX_SIZE, MAX_SIZE))

    # normalize
    in_im = in_im / 255.0
    in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)

    # inference
    in_im = in_im.half().to(device)
    model = model.half()
    with torch.no_grad():
        pred = model(in_im)
        pred = torch.clamp(pred, 0, 1)
        pred = pred[0].permute(1, 2, 0).cpu().numpy()
        pred = (pred * 255).astype(np.uint8)

        if max(w, h) < MAX_SIZE:
            out_im = pred[padding_h:, padding_w:]
        else:
            pred[pred == 0] = 1
            shadow_map = cv2.resize(im_org, (MAX_SIZE, MAX_SIZE)).astype(
                float
            ) / pred.astype(float)
            shadow_map = cv2.resize(shadow_map, (w, h))
            shadow_map[shadow_map == 0] = 0.00001
            out_im = np.clip(im_org.astype(float) / shadow_map, 0, 255).astype(np.uint8)

    return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im


def deblurring(model, im_org, device):
    # setup image
    in_im, padding_h, padding_w = stride_integral(im_org, 8)
    prompt = deblur_prompt(in_im)
    in_im = np.concatenate((in_im, prompt), -1)
    in_im = in_im / 255.0
    in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
    in_im = in_im.half().to(device)
    # inference
    model.to(device)
    model.eval()
    model = model.half()
    with torch.no_grad():
        pred = model(in_im)
        pred = torch.clamp(pred, 0, 1)
        pred = pred[0].permute(1, 2, 0).cpu().numpy()
        pred = (pred * 255).astype(np.uint8)
        out_im = pred[padding_h:, padding_w:]

    return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im


def binarization(model, im_org, device):
    im, padding_h, padding_w = stride_integral(im_org, 8)
    prompt = binarization_promptv2(im)
    h, w = im.shape[:2]
    in_im = np.concatenate((im, prompt), -1)

    in_im = in_im / 255.0
    in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
    in_im = in_im.to(device)
    model = model.half()
    in_im = in_im.half()
    with torch.no_grad():
        pred = model(in_im)
        pred = pred[:, :2, :, :]
        pred = torch.max(torch.softmax(pred, 1), 1)[1]
        pred = pred[0].cpu().numpy()
        pred = (pred * 255).astype(np.uint8)
        pred = cv2.resize(pred, (w, h))
        out_im = pred[padding_h:, padding_w:]

    return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im


def model_init(model_path, device):
    # prepare model
    model = restormer_arch.Restormer(
        inp_channels=6,
        out_channels=3,
        dim=48,
        num_blocks=[2, 3, 3, 4],
        num_refinement_blocks=4,
        heads=[1, 2, 4, 8],
        ffn_expansion_factor=2.66,
        bias=False,
        LayerNorm_type="WithBias",
        dual_pixel_task=True,
    )

    if device == "cpu":
        state = convert_state_dict(
            torch.load(model_path, map_location="cpu")["model_state"]
        )
    else:
        state = convert_state_dict(
            torch.load(model_path, map_location="cuda:0")["model_state"]
        )
    model.load_state_dict(state)

    model.eval()
    model = model.to(device)
    return model


def resize(image, max_size):
    h, w = image.shape[:2]
    if max(h, w) > max_size:
        if h > w:
            h_new = max_size
            w_new = int(w * h_new / h)
        else:
            w_new = max_size
            h_new = int(h * w_new / w)
        pil_image = Image.fromarray(image)
        pil_image = pil_image.resize((w_new, h_new), Image.Resampling.LANCZOS)
        image = np.array(pil_image)
    return image


def inference_one_image(model, image, tasks, device):
    # image should be in BGR format

    if "dewarping" in tasks:
        *_, image = dewarping(model, image, device)
    
    # if only dewarping return here
    if len(tasks) == 1 and "dewarping" in tasks:
        return image
    
    image = resize(image, 1536)

    if "deshadowing" in tasks:
        *_, image = deshadowing(model, image, device)
    if "appearance" in tasks:
        *_, image = appearance(model, image, device)
    if "deblurring" in tasks:
        *_, image = deblurring(model, image, device)
    if "binarization" in tasks:
        *_, image = binarization(model, image, device)
    
    return image