Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,036 Bytes
4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 e7c7d09 4d657e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import sys
import cv2
import utils
import numpy as np
import torch
from PIL import Image
from utils import convert_state_dict
from models import restormer_arch
from data.preprocess.crop_merge_image import stride_integral
sys.path.append("./data/MBD/")
from data.MBD.infer import net1_net2_infer_single_im
def dewarp_prompt(img):
mask = net1_net2_infer_single_im(img, "data/MBD/checkpoint/mbd.pkl")
base_coord = utils.getBasecoord(256, 256) / 256
img[mask == 0] = 0
mask = cv2.resize(mask, (256, 256)) / 255
return img, np.concatenate((base_coord, np.expand_dims(mask, -1)), -1)
def deshadow_prompt(img):
h, w = img.shape[:2]
# img = cv2.resize(img,(128,128))
img = cv2.resize(img, (1024, 1024))
rgb_planes = cv2.split(img)
result_planes = []
result_norm_planes = []
bg_imgs = []
for plane in rgb_planes:
dilated_img = cv2.dilate(plane, np.ones((7, 7), np.uint8))
bg_img = cv2.medianBlur(dilated_img, 21)
bg_imgs.append(bg_img)
diff_img = 255 - cv2.absdiff(plane, bg_img)
norm_img = cv2.normalize(
diff_img,
None,
alpha=0,
beta=255,
norm_type=cv2.NORM_MINMAX,
dtype=cv2.CV_8UC1,
)
result_planes.append(diff_img)
result_norm_planes.append(norm_img)
bg_imgs = cv2.merge(bg_imgs)
bg_imgs = cv2.resize(bg_imgs, (w, h))
# result = cv2.merge(result_planes)
result_norm = cv2.merge(result_norm_planes)
result_norm[result_norm == 0] = 1
shadow_map = np.clip(
img.astype(float) / result_norm.astype(float) * 255, 0, 255
).astype(np.uint8)
shadow_map = cv2.resize(shadow_map, (w, h))
shadow_map = cv2.cvtColor(shadow_map, cv2.COLOR_BGR2GRAY)
shadow_map = cv2.cvtColor(shadow_map, cv2.COLOR_GRAY2BGR)
# return shadow_map
return bg_imgs
def deblur_prompt(img):
x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
absX = cv2.convertScaleAbs(x) # 转回uint8
absY = cv2.convertScaleAbs(y)
high_frequency = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
high_frequency = cv2.cvtColor(high_frequency, cv2.COLOR_BGR2GRAY)
high_frequency = cv2.cvtColor(high_frequency, cv2.COLOR_GRAY2BGR)
return high_frequency
def appearance_prompt(img):
h, w = img.shape[:2]
# img = cv2.resize(img,(128,128))
img = cv2.resize(img, (1024, 1024))
rgb_planes = cv2.split(img)
result_planes = []
result_norm_planes = []
for plane in rgb_planes:
dilated_img = cv2.dilate(plane, np.ones((7, 7), np.uint8))
bg_img = cv2.medianBlur(dilated_img, 21)
diff_img = 255 - cv2.absdiff(plane, bg_img)
norm_img = cv2.normalize(
diff_img,
None,
alpha=0,
beta=255,
norm_type=cv2.NORM_MINMAX,
dtype=cv2.CV_8UC1,
)
result_planes.append(diff_img)
result_norm_planes.append(norm_img)
result_norm = cv2.merge(result_norm_planes)
result_norm = cv2.resize(result_norm, (w, h))
return result_norm
def binarization_promptv2(img):
result, thresh = utils.SauvolaModBinarization(img)
thresh = thresh.astype(np.uint8)
result[result > 155] = 255
result[result <= 155] = 0
x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
absX = cv2.convertScaleAbs(x) # 转回uint8
absY = cv2.convertScaleAbs(y)
high_frequency = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
high_frequency = cv2.cvtColor(high_frequency, cv2.COLOR_BGR2GRAY)
return np.concatenate(
(
np.expand_dims(thresh, -1),
np.expand_dims(high_frequency, -1),
np.expand_dims(result, -1),
),
-1,
)
def dewarping(model, im_org, device):
INPUT_SIZE = 256
im_masked, prompt_org = dewarp_prompt(im_org.copy())
h, w = im_masked.shape[:2]
im_masked = im_masked.copy()
im_masked = cv2.resize(im_masked, (INPUT_SIZE, INPUT_SIZE))
im_masked = im_masked / 255.0
im_masked = torch.from_numpy(im_masked.transpose(2, 0, 1)).unsqueeze(0)
im_masked = im_masked.float().to(device)
prompt = torch.from_numpy(prompt_org.transpose(2, 0, 1)).unsqueeze(0)
prompt = prompt.float().to(device)
in_im = torch.cat((im_masked, prompt), dim=1)
# inference
base_coord = utils.getBasecoord(INPUT_SIZE, INPUT_SIZE) / INPUT_SIZE
model = model.float()
with torch.no_grad():
pred = model(in_im)
pred = pred[0][:2].permute(1, 2, 0).cpu().numpy()
pred = pred + base_coord
## smooth
for i in range(15):
pred = cv2.blur(pred, (3, 3), borderType=cv2.BORDER_REPLICATE)
pred = cv2.resize(pred, (w, h)) * (w, h)
pred = pred.astype(np.float32)
out_im = cv2.remap(im_org, pred[:, :, 0], pred[:, :, 1], cv2.INTER_LINEAR)
prompt_org = (prompt_org * 255).astype(np.uint8)
prompt_org = cv2.resize(prompt_org, im_org.shape[:2][::-1])
return prompt_org[:, :, 0], prompt_org[:, :, 1], prompt_org[:, :, 2], out_im
def appearance(model, im_org, device):
MAX_SIZE = 1600
# obtain im and prompt
h, w = im_org.shape[:2]
prompt = appearance_prompt(im_org)
in_im = np.concatenate((im_org, prompt), -1)
# constrain the max resolution
if max(w, h) < MAX_SIZE:
in_im, padding_h, padding_w = stride_integral(in_im, 8)
else:
in_im = cv2.resize(in_im, (MAX_SIZE, MAX_SIZE))
# normalize
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
# inference
in_im = in_im.half().to(device)
model = model.half()
with torch.no_grad():
pred = model(in_im)
pred = torch.clamp(pred, 0, 1)
pred = pred[0].permute(1, 2, 0).cpu().numpy()
pred = (pred * 255).astype(np.uint8)
if max(w, h) < MAX_SIZE:
out_im = pred[padding_h:, padding_w:]
else:
pred[pred == 0] = 1
shadow_map = cv2.resize(im_org, (MAX_SIZE, MAX_SIZE)).astype(
float
) / pred.astype(float)
shadow_map = cv2.resize(shadow_map, (w, h))
shadow_map[shadow_map == 0] = 0.00001
out_im = np.clip(im_org.astype(float) / shadow_map, 0, 255).astype(np.uint8)
return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im
def deshadowing(model, im_org, device):
MAX_SIZE = 1600
# obtain im and prompt
h, w = im_org.shape[:2]
prompt = deshadow_prompt(im_org)
in_im = np.concatenate((im_org, prompt), -1)
# constrain the max resolution
if max(w, h) < MAX_SIZE:
in_im, padding_h, padding_w = stride_integral(in_im, 8)
else:
in_im = cv2.resize(in_im, (MAX_SIZE, MAX_SIZE))
# normalize
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
# inference
in_im = in_im.half().to(device)
model = model.half()
with torch.no_grad():
pred = model(in_im)
pred = torch.clamp(pred, 0, 1)
pred = pred[0].permute(1, 2, 0).cpu().numpy()
pred = (pred * 255).astype(np.uint8)
if max(w, h) < MAX_SIZE:
out_im = pred[padding_h:, padding_w:]
else:
pred[pred == 0] = 1
shadow_map = cv2.resize(im_org, (MAX_SIZE, MAX_SIZE)).astype(
float
) / pred.astype(float)
shadow_map = cv2.resize(shadow_map, (w, h))
shadow_map[shadow_map == 0] = 0.00001
out_im = np.clip(im_org.astype(float) / shadow_map, 0, 255).astype(np.uint8)
return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im
def deblurring(model, im_org, device):
# setup image
in_im, padding_h, padding_w = stride_integral(im_org, 8)
prompt = deblur_prompt(in_im)
in_im = np.concatenate((in_im, prompt), -1)
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
in_im = in_im.half().to(device)
# inference
model.to(device)
model.eval()
model = model.half()
with torch.no_grad():
pred = model(in_im)
pred = torch.clamp(pred, 0, 1)
pred = pred[0].permute(1, 2, 0).cpu().numpy()
pred = (pred * 255).astype(np.uint8)
out_im = pred[padding_h:, padding_w:]
return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im
def binarization(model, im_org, device):
im, padding_h, padding_w = stride_integral(im_org, 8)
prompt = binarization_promptv2(im)
h, w = im.shape[:2]
in_im = np.concatenate((im, prompt), -1)
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
in_im = in_im.to(device)
model = model.half()
in_im = in_im.half()
with torch.no_grad():
pred = model(in_im)
pred = pred[:, :2, :, :]
pred = torch.max(torch.softmax(pred, 1), 1)[1]
pred = pred[0].cpu().numpy()
pred = (pred * 255).astype(np.uint8)
pred = cv2.resize(pred, (w, h))
out_im = pred[padding_h:, padding_w:]
return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im
def model_init(model_path, device):
# prepare model
model = restormer_arch.Restormer(
inp_channels=6,
out_channels=3,
dim=48,
num_blocks=[2, 3, 3, 4],
num_refinement_blocks=4,
heads=[1, 2, 4, 8],
ffn_expansion_factor=2.66,
bias=False,
LayerNorm_type="WithBias",
dual_pixel_task=True,
)
if device == "cpu":
state = convert_state_dict(
torch.load(model_path, map_location="cpu")["model_state"]
)
else:
state = convert_state_dict(
torch.load(model_path, map_location="cuda:0")["model_state"]
)
model.load_state_dict(state)
model.eval()
model = model.to(device)
return model
def resize(image, max_size):
h, w = image.shape[:2]
if max(h, w) > max_size:
if h > w:
h_new = max_size
w_new = int(w * h_new / h)
else:
w_new = max_size
h_new = int(h * w_new / w)
pil_image = Image.fromarray(image)
pil_image = pil_image.resize((w_new, h_new), Image.Resampling.LANCZOS)
image = np.array(pil_image)
return image
def inference_one_image(model, image, tasks, device):
# image should be in BGR format
if "dewarping" in tasks:
*_, image = dewarping(model, image, device)
# if only dewarping return here
if len(tasks) == 1 and "dewarping" in tasks:
return image
image = resize(image, 1536)
if "deshadowing" in tasks:
*_, image = deshadowing(model, image, device)
if "appearance" in tasks:
*_, image = appearance(model, image, device)
if "deblurring" in tasks:
*_, image = deblurring(model, image, device)
if "binarization" in tasks:
*_, image = binarization(model, image, device)
return image
|