Spaces:
Running
on
Zero
Running
on
Zero
# encoding: utf-8 | |
import torch | |
import itertools | |
import torch.nn as nn | |
from torch.autograd import Function, Variable | |
class TPSGridGen(nn.Module): | |
def __init__(self, target_height, target_width, target_control_points): | |
super(TPSGridGen, self).__init__() | |
assert target_control_points.ndimension() == 2 | |
assert target_control_points.size(1) == 2 | |
N = target_control_points.size(0) | |
self.num_points = N | |
target_control_points = target_control_points.float() | |
# create padded kernel matrix | |
forward_kernel = torch.zeros(N + 3, N + 3) | |
target_control_partial_repr = self.compute_partial_repr(target_control_points, target_control_points) | |
forward_kernel[:N, :N].copy_(target_control_partial_repr) | |
forward_kernel[:N, -3].fill_(1) | |
forward_kernel[-3, :N].fill_(1) | |
forward_kernel[:N, -2:].copy_(target_control_points) | |
forward_kernel[-2:, :N].copy_(target_control_points.transpose(0, 1)) | |
# compute inverse matrix | |
inverse_kernel = torch.inverse(forward_kernel) | |
# create target cordinate matrix | |
HW = target_height * target_width | |
target_coordinate = list(itertools.product(range(target_height), range(target_width))) | |
target_coordinate = torch.Tensor(target_coordinate) # HW x 2 | |
Y, X = target_coordinate.split(1, dim = 1) | |
Y = Y * 2 / (target_height - 1) - 1 | |
X = X * 2 / (target_width - 1) - 1 | |
target_coordinate = torch.cat([X, Y], dim = 1) # convert from (y, x) to (x, y) | |
target_coordinate_partial_repr = self.compute_partial_repr(target_coordinate, target_control_points) | |
target_coordinate_repr = torch.cat([ | |
target_coordinate_partial_repr, torch.ones(HW, 1), target_coordinate | |
], dim = 1) | |
# register precomputed matrices | |
self.register_buffer('inverse_kernel', inverse_kernel) | |
self.register_buffer('padding_matrix', torch.zeros(3, 2)) | |
self.register_buffer('target_coordinate_repr', target_coordinate_repr) | |
def forward(self, source_control_points): | |
assert source_control_points.ndimension() == 3 | |
assert source_control_points.size(1) == self.num_points | |
assert source_control_points.size(2) == 2 | |
batch_size = source_control_points.size(0) | |
Y = torch.cat([source_control_points, Variable(self.padding_matrix.expand(batch_size, 3, 2))], 1) | |
mapping_matrix = torch.matmul(Variable(self.inverse_kernel), Y) | |
source_coordinate = torch.matmul(Variable(self.target_coordinate_repr), mapping_matrix) | |
return source_coordinate | |
# phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2 | |
def compute_partial_repr(self, input_points, control_points): | |
N = input_points.size(0) | |
M = control_points.size(0) | |
pairwise_diff = input_points.view(N, 1, 2) - control_points.view(1, M, 2) | |
# original implementation, very slow | |
# pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance | |
pairwise_diff_square = pairwise_diff * pairwise_diff | |
pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :, 1] | |
repr_matrix = 0.5 * pairwise_dist * torch.log(pairwise_dist) | |
# fix numerical error for 0 * log(0), substitute all nan with 0 | |
mask = repr_matrix != repr_matrix | |
repr_matrix.masked_fill_(mask, 0) | |
return repr_matrix |