qubvel-hf's picture
qubvel-hf HF staff
Init project
c509e76
raw
history blame
13.2 kB
import os
import cv2
import glob
import utils
import argparse
import numpy as np
from tqdm import tqdm
from skimage.metrics import structural_similarity,peak_signal_noise_ratio
import torch
from utils import convert_state_dict
from models import restormer_arch
from data.preprocess.crop_merge_image import stride_integral
os.sys.path.append('./data/MBD/')
from data.MBD.infer import net1_net2_infer_single_im
def dewarp_prompt(img):
mask = net1_net2_infer_single_im(img,'data/MBD/checkpoint/mbd.pkl')
base_coord = utils.getBasecoord(256,256)/256
img[mask==0]=0
mask = cv2.resize(mask,(256,256))/255
return img,np.concatenate((base_coord,np.expand_dims(mask,-1)),-1)
def deshadow_prompt(img):
h,w = img.shape[:2]
# img = cv2.resize(img,(128,128))
img = cv2.resize(img,(1024,1024))
rgb_planes = cv2.split(img)
result_planes = []
result_norm_planes = []
bg_imgs = []
for plane in rgb_planes:
dilated_img = cv2.dilate(plane, np.ones((7,7), np.uint8))
bg_img = cv2.medianBlur(dilated_img, 21)
bg_imgs.append(bg_img)
diff_img = 255 - cv2.absdiff(plane, bg_img)
norm_img = cv2.normalize(diff_img,None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1)
result_planes.append(diff_img)
result_norm_planes.append(norm_img)
bg_imgs = cv2.merge(bg_imgs)
bg_imgs = cv2.resize(bg_imgs,(w,h))
# result = cv2.merge(result_planes)
result_norm = cv2.merge(result_norm_planes)
result_norm[result_norm==0]=1
shadow_map = np.clip(img.astype(float)/result_norm.astype(float)*255,0,255).astype(np.uint8)
shadow_map = cv2.resize(shadow_map,(w,h))
shadow_map = cv2.cvtColor(shadow_map,cv2.COLOR_BGR2GRAY)
shadow_map = cv2.cvtColor(shadow_map,cv2.COLOR_GRAY2BGR)
# return shadow_map
return bg_imgs
def deblur_prompt(img):
x = cv2.Sobel(img,cv2.CV_16S,1,0)
y = cv2.Sobel(img,cv2.CV_16S,0,1)
absX = cv2.convertScaleAbs(x) # 转回uint8
absY = cv2.convertScaleAbs(y)
high_frequency = cv2.addWeighted(absX,0.5,absY,0.5,0)
high_frequency = cv2.cvtColor(high_frequency,cv2.COLOR_BGR2GRAY)
high_frequency = cv2.cvtColor(high_frequency,cv2.COLOR_GRAY2BGR)
return high_frequency
def appearance_prompt(img):
h,w = img.shape[:2]
# img = cv2.resize(img,(128,128))
img = cv2.resize(img,(1024,1024))
rgb_planes = cv2.split(img)
result_planes = []
result_norm_planes = []
for plane in rgb_planes:
dilated_img = cv2.dilate(plane, np.ones((7,7), np.uint8))
bg_img = cv2.medianBlur(dilated_img, 21)
diff_img = 255 - cv2.absdiff(plane, bg_img)
norm_img = cv2.normalize(diff_img,None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1)
result_planes.append(diff_img)
result_norm_planes.append(norm_img)
result_norm = cv2.merge(result_norm_planes)
result_norm = cv2.resize(result_norm,(w,h))
return result_norm
def binarization_promptv2(img):
result,thresh = utils.SauvolaModBinarization(img)
thresh = thresh.astype(np.uint8)
result[result>155]=255
result[result<=155]=0
x = cv2.Sobel(img,cv2.CV_16S,1,0)
y = cv2.Sobel(img,cv2.CV_16S,0,1)
absX = cv2.convertScaleAbs(x) # 转回uint8
absY = cv2.convertScaleAbs(y)
high_frequency = cv2.addWeighted(absX,0.5,absY,0.5,0)
high_frequency = cv2.cvtColor(high_frequency,cv2.COLOR_BGR2GRAY)
return np.concatenate((np.expand_dims(thresh,-1),np.expand_dims(high_frequency,-1),np.expand_dims(result,-1)),-1)
def dewarping(model,im_path):
INPUT_SIZE=256
im_org = cv2.imread(im_path)
im_masked, prompt_org = dewarp_prompt(im_org.copy())
h,w = im_masked.shape[:2]
im_masked = im_masked.copy()
im_masked = cv2.resize(im_masked,(INPUT_SIZE,INPUT_SIZE))
im_masked = im_masked / 255.0
im_masked = torch.from_numpy(im_masked.transpose(2,0,1)).unsqueeze(0)
im_masked = im_masked.float().to(DEVICE)
prompt = torch.from_numpy(prompt_org.transpose(2,0,1)).unsqueeze(0)
prompt = prompt.float().to(DEVICE)
in_im = torch.cat((im_masked,prompt),dim=1)
# inference
base_coord = utils.getBasecoord(INPUT_SIZE,INPUT_SIZE)/INPUT_SIZE
model = model.float()
with torch.no_grad():
pred = model(in_im)
pred = pred[0][:2].permute(1,2,0).cpu().numpy()
pred = pred+base_coord
## smooth
for i in range(15):
pred = cv2.blur(pred,(3,3),borderType=cv2.BORDER_REPLICATE)
pred = cv2.resize(pred,(w,h))*(w,h)
pred = pred.astype(np.float32)
out_im = cv2.remap(im_org,pred[:,:,0],pred[:,:,1],cv2.INTER_LINEAR)
prompt_org = (prompt_org*255).astype(np.uint8)
prompt_org = cv2.resize(prompt_org,im_org.shape[:2][::-1])
return prompt_org[:,:,0],prompt_org[:,:,1],prompt_org[:,:,2],out_im
def appearance(model,im_path):
MAX_SIZE=1600
# obtain im and prompt
im_org = cv2.imread(im_path)
h,w = im_org.shape[:2]
prompt = appearance_prompt(im_org)
in_im = np.concatenate((im_org,prompt),-1)
# constrain the max resolution
if max(w,h) < MAX_SIZE:
in_im,padding_h,padding_w = stride_integral(in_im,8)
else:
in_im = cv2.resize(in_im,(MAX_SIZE,MAX_SIZE))
# normalize
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2,0,1)).unsqueeze(0)
# inference
in_im = in_im.half().to(DEVICE)
model = model.half()
with torch.no_grad():
pred = model(in_im)
pred = torch.clamp(pred,0,1)
pred = pred[0].permute(1,2,0).cpu().numpy()
pred = (pred*255).astype(np.uint8)
if max(w,h) < MAX_SIZE:
out_im = pred[padding_h:,padding_w:]
else:
pred[pred==0] = 1
shadow_map = cv2.resize(im_org,(MAX_SIZE,MAX_SIZE)).astype(float)/pred.astype(float)
shadow_map = cv2.resize(shadow_map,(w,h))
shadow_map[shadow_map==0]=0.00001
out_im = np.clip(im_org.astype(float)/shadow_map,0,255).astype(np.uint8)
return prompt[:,:,0],prompt[:,:,1],prompt[:,:,2],out_im
def deshadowing(model,im_path):
MAX_SIZE=1600
# obtain im and prompt
im_org = cv2.imread(im_path)
h,w = im_org.shape[:2]
prompt = deshadow_prompt(im_org)
in_im = np.concatenate((im_org,prompt),-1)
# constrain the max resolution
if max(w,h) < MAX_SIZE:
in_im,padding_h,padding_w = stride_integral(in_im,8)
else:
in_im = cv2.resize(in_im,(MAX_SIZE,MAX_SIZE))
# normalize
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2,0,1)).unsqueeze(0)
# inference
in_im = in_im.half().to(DEVICE)
model = model.half()
with torch.no_grad():
pred = model(in_im)
pred = torch.clamp(pred,0,1)
pred = pred[0].permute(1,2,0).cpu().numpy()
pred = (pred*255).astype(np.uint8)
if max(w,h) < MAX_SIZE:
out_im = pred[padding_h:,padding_w:]
else:
pred[pred==0]=1
shadow_map = cv2.resize(im_org,(MAX_SIZE,MAX_SIZE)).astype(float)/pred.astype(float)
shadow_map = cv2.resize(shadow_map,(w,h))
shadow_map[shadow_map==0]=0.00001
out_im = np.clip(im_org.astype(float)/shadow_map,0,255).astype(np.uint8)
return prompt[:,:,0],prompt[:,:,1],prompt[:,:,2],out_im
def deblurring(model,im_path):
# setup image
im_org = cv2.imread(im_path)
in_im,padding_h,padding_w = stride_integral(im_org,8)
prompt = deblur_prompt(in_im)
in_im = np.concatenate((in_im,prompt),-1)
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2,0,1)).unsqueeze(0)
in_im = in_im.half().to(DEVICE)
# inference
model.to(DEVICE)
model.eval()
model = model.half()
with torch.no_grad():
pred = model(in_im)
pred = torch.clamp(pred,0,1)
pred = pred[0].permute(1,2,0).cpu().numpy()
pred = (pred*255).astype(np.uint8)
out_im = pred[padding_h:,padding_w:]
return prompt[:,:,0],prompt[:,:,1],prompt[:,:,2],out_im
def binarization(model,im_path):
im_org = cv2.imread(im_path)
im,padding_h,padding_w = stride_integral(im_org,8)
prompt = binarization_promptv2(im)
h,w = im.shape[:2]
in_im = np.concatenate((im,prompt),-1)
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2,0,1)).unsqueeze(0)
in_im = in_im.to(DEVICE)
model = model.half()
in_im = in_im.half()
with torch.no_grad():
pred = model(in_im,'binarization')
pred = pred[:,:2,:,:]
pred = torch.max(torch.softmax(pred,1),1)[1]
pred = pred[0].cpu().numpy()
pred = (pred*255).astype(np.uint8)
pred = cv2.resize(pred,(w,h))
out_im = pred[padding_h:,padding_w:]
return prompt[:,:,0],prompt[:,:,1],prompt[:,:,2],out_im
def get_args():
parser = argparse.ArgumentParser(description='Params')
parser.add_argument('--model_path', nargs='?', type=str, default='./checkpoints/docres.pkl',help='Path of the saved checkpoint')
parser.add_argument('--dataset', nargs='?', type=str, default='./distorted/',help='Path of input document image')
args = parser.parse_args()
assert args.dataset in all_datasets.keys(), 'Unregisted dataset, dataset must be one of '+', '.join(all_datasets)
return args
def model_init(args):
# prepare model
model = restormer_arch.Restormer(
inp_channels=6,
out_channels=3,
dim = 48,
num_blocks = [2,3,3,4],
num_refinement_blocks = 4,
heads = [1,2,4,8],
ffn_expansion_factor = 2.66,
bias = False,
LayerNorm_type = 'WithBias',
dual_pixel_task = True
)
if DEVICE.type == 'cpu':
state = convert_state_dict(torch.load(args.model_path, map_location='cpu')['model_state'])
else:
state = convert_state_dict(torch.load(args.model_path, map_location='cuda:0')['model_state'])
model.load_state_dict(state)
model.eval()
model = model.to(DEVICE)
return model
def inference_one_im(model,im_path,task):
if task=='dewarping':
prompt1,prompt2,prompt3,restorted = dewarping(model,im_path)
elif task=='deshadowing':
prompt1,prompt2,prompt3,restorted = deshadowing(model,im_path)
elif task=='appearance':
prompt1,prompt2,prompt3,restorted = appearance(model,im_path)
elif task=='deblurring':
prompt1,prompt2,prompt3,restorted = deblurring(model,im_path)
elif task=='binarization':
prompt1,prompt2,prompt3,restorted = binarization(model,im_path)
elif task=='end2end':
prompt1,prompt2,prompt3,restorted = dewarping(model,im_path)
cv2.imwrite('./temp.jpg',restorted)
prompt1,prompt2,prompt3,restorted = deshadowing(model,'./temp.jpg')
cv2.imwrite('./temp.jpg',restorted)
prompt1,prompt2,prompt3,restorted = appearance(model,'./temp.jpg')
os.remove('./temp.jpg')
return prompt1,prompt2,prompt3,restorted
if __name__ == '__main__':
all_datasets = {'dir300':'dewarping','kligler':'deshadowing','jung':'deshadowing','osr':'deshadowing','docunet_docaligner':'appearance','realdae':'appearance','tdd':'deblurring','dibco18':'binarization'}
## model init
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args = get_args()
model = model_init(args)
## inference
print('Predicting')
task = all_datasets[args.dataset]
im_paths = glob.glob(os.path.join('./data/eval/',args.dataset,'*_in.*'))
for im_path in tqdm(im_paths):
_,_,_,restorted = inference_one_im(model,im_path,task)
cv2.imwrite(im_path.replace('_in','_docres'),restorted)
## obtain metric
print('Metric calculating')
if task == 'dewarping':
exit()
elif task=='deshadowing' or task=='appearance' or task=='deblurring':
psnr = []
ssim = []
for im_path in tqdm(im_paths):
pred = cv2.imread(im_path.replace('_in','_docres'))
gt = cv2.imread(im_path.replace('_in','_gt'))
ssim.append(structural_similarity(pred,gt,multichannel=True))
psnr.append(peak_signal_noise_ratio(pred, gt))
print(args.dataset)
print('ssim:',np.mean(ssim))
print('psnr:',np.mean(psnr))
elif task=='binarization':
fmeasures, pfmeasures,psnrs = [],[],[]
for im_path in tqdm(im_paths):
pred = cv2.imread(im_path.replace('_in','_docres'))
gt = cv2.imread(im_path.replace('_in','_gt'))
pred = cv2.cvtColor(pred,cv2.COLOR_BGR2GRAY)
gt = cv2.cvtColor(gt,cv2.COLOR_BGR2GRAY)
pred[pred>155]=255
pred[pred<=155]=0
gt[gt>155]=255
gt[gt<=155]=0
fmeasure, pfmeasure,psnr,_,_,_ = utils.bin_metric(pred,gt)
fmeasures.append(fmeasure)
pfmeasures.append(pfmeasure)
psnrs.append(psnr)
print(args.dataset)
print('fmeasure:',np.mean(fmeasures))
print('pfmeasure:',np.mean(pfmeasures))
print('psnr:',np.mean(psnrs))