Test-ViT5-Med / app.py
quocanh944's picture
Add application file
d663586
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-base")
model = AutoModelForSeq2SeqLM.from_pretrained("quocanh944/viT5-med-qa")
def generate_answer(question):
global model, tokenizer
model.eval()
input_text = "hỏi: " + question
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True, padding="max_length")
input_ids = inputs.input_ids
attention_mask = inputs.attention_mask
with torch.no_grad():
outputs = model.generate(input_ids=input_ids, attention_mask=attention_mask, max_length=128, num_beams=4, early_stopping=True)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
title = "Interactive demo: ViT5 with Medical Dataset"
description = "Demo for ViT5 with Medical Dataset. The model is fine-tuned on a Vietnamese medical dataset. The model is able to answer questions related to medical knowledge. Please input your question in the textbox and click submit to get the answer."
article = "This is a demo for ViT5 with Medical Dataset. The model is fine-tuned on a Vietnamese medical dataset. The model is able to answer questions related to medical knowledge. Please input your question in the textbox and click submit to get the answer."
examples = ["Tôi bị đau tay thì nên làm gì?", "Covid-19 là gì?", "Tôi nên làm gì khi bị sùi mào gà?", "Tôi nên ăn gì để tăng cân?"]
iface = gr.Interface(fn=generate_answer,
inputs=gr.Textbox(),
outputs=gr.Textbox(),
title=title,
description=description,
article=article,
examples=examples)
iface.launch()