Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from typing import List | |
import torch | |
from diffusers import StableDiffusionPipeline | |
from diffusers.pipelines.controlnet import MultiControlNetModel | |
from PIL import Image | |
from safetensors import safe_open | |
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
from .attention_processor_faceid import LoRAAttnProcessor, LoRAIPAttnProcessor | |
from .utils import is_torch2_available | |
USE_DAFAULT_ATTN = False # should be True for visualization_attnmap | |
if is_torch2_available() and (not USE_DAFAULT_ATTN): | |
from .attention_processor_faceid import ( | |
LoRAAttnProcessor2_0 as LoRAAttnProcessor, | |
) | |
from .attention_processor_faceid import ( | |
LoRAIPAttnProcessor2_0 as LoRAIPAttnProcessor, | |
) | |
else: | |
from .attention_processor_faceid import LoRAAttnProcessor, LoRAIPAttnProcessor | |
from .resampler import PerceiverAttention, FeedForward | |
class FacePerceiverResampler(torch.nn.Module): | |
def __init__( | |
self, | |
*, | |
dim=768, | |
depth=4, | |
dim_head=64, | |
heads=16, | |
embedding_dim=1280, | |
output_dim=768, | |
ff_mult=4, | |
): | |
super().__init__() | |
self.proj_in = torch.nn.Linear(embedding_dim, dim) | |
self.proj_out = torch.nn.Linear(dim, output_dim) | |
self.norm_out = torch.nn.LayerNorm(output_dim) | |
self.layers = torch.nn.ModuleList([]) | |
for _ in range(depth): | |
self.layers.append( | |
torch.nn.ModuleList( | |
[ | |
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), | |
FeedForward(dim=dim, mult=ff_mult), | |
] | |
) | |
) | |
def forward(self, latents, x): | |
x = self.proj_in(x) | |
for attn, ff in self.layers: | |
latents = attn(x, latents) + latents | |
latents = ff(latents) + latents | |
latents = self.proj_out(latents) | |
return self.norm_out(latents) | |
class MLPProjModel(torch.nn.Module): | |
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4): | |
super().__init__() | |
self.cross_attention_dim = cross_attention_dim | |
self.num_tokens = num_tokens | |
self.proj = torch.nn.Sequential( | |
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2), | |
torch.nn.GELU(), | |
torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens), | |
) | |
self.norm = torch.nn.LayerNorm(cross_attention_dim) | |
def forward(self, id_embeds): | |
x = self.proj(id_embeds) | |
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) | |
x = self.norm(x) | |
return x | |
class ProjPlusModel(torch.nn.Module): | |
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, clip_embeddings_dim=1280, num_tokens=4): | |
super().__init__() | |
self.cross_attention_dim = cross_attention_dim | |
self.num_tokens = num_tokens | |
self.proj = torch.nn.Sequential( | |
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2), | |
torch.nn.GELU(), | |
torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens), | |
) | |
self.norm = torch.nn.LayerNorm(cross_attention_dim) | |
self.perceiver_resampler = FacePerceiverResampler( | |
dim=cross_attention_dim, | |
depth=4, | |
dim_head=64, | |
heads=cross_attention_dim // 64, | |
embedding_dim=clip_embeddings_dim, | |
output_dim=cross_attention_dim, | |
ff_mult=4, | |
) | |
def forward(self, id_embeds, clip_embeds, shortcut=False, scale=1.0): | |
x = self.proj(id_embeds) | |
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) | |
x = self.norm(x) | |
out = self.perceiver_resampler(x, clip_embeds) | |
if shortcut: | |
out = x + scale * out | |
return out | |
class IPAdapterFaceID: | |
def __init__(self, sd_pipe, ip_ckpt, device, lora_rank=128, num_tokens=4, torch_dtype=torch.float16): | |
self.device = device | |
self.ip_ckpt = ip_ckpt | |
self.lora_rank = lora_rank | |
self.num_tokens = num_tokens | |
self.torch_dtype = torch_dtype | |
self.pipe = sd_pipe.to(self.device) | |
self.set_ip_adapter() | |
# image proj model | |
self.image_proj_model = self.init_proj() | |
self.load_ip_adapter() | |
def init_proj(self): | |
image_proj_model = MLPProjModel( | |
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
id_embeddings_dim=512, | |
num_tokens=self.num_tokens, | |
).to(self.device, dtype=self.torch_dtype) | |
return image_proj_model | |
def set_ip_adapter(self): | |
unet = self.pipe.unet | |
attn_procs = {} | |
for name in unet.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = unet.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = unet.config.block_out_channels[block_id] | |
if cross_attention_dim is None: | |
attn_procs[name] = LoRAAttnProcessor( | |
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank, | |
).to(self.device, dtype=self.torch_dtype) | |
else: | |
attn_procs[name] = LoRAIPAttnProcessor( | |
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens, | |
).to(self.device, dtype=self.torch_dtype) | |
unet.set_attn_processor(attn_procs) | |
def load_ip_adapter(self): | |
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors": | |
state_dict = {"image_proj": {}, "ip_adapter": {}} | |
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
if key.startswith("image_proj."): | |
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) | |
elif key.startswith("ip_adapter."): | |
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) | |
else: | |
state_dict = torch.load(self.ip_ckpt, map_location="cpu") | |
self.image_proj_model.load_state_dict(state_dict["image_proj"]) | |
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) | |
ip_layers.load_state_dict(state_dict["ip_adapter"]) | |
def get_image_embeds(self, faceid_embeds): | |
faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype) | |
image_prompt_embeds = self.image_proj_model(faceid_embeds) | |
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds)) | |
return image_prompt_embeds, uncond_image_prompt_embeds | |
def set_scale(self, scale): | |
for attn_processor in self.pipe.unet.attn_processors.values(): | |
if isinstance(attn_processor, LoRAIPAttnProcessor): | |
attn_processor.scale = scale | |
def generate( | |
self, | |
faceid_embeds=None, | |
prompt=None, | |
negative_prompt=None, | |
scale=1.0, | |
num_samples=4, | |
seed=None, | |
guidance_scale=7.5, | |
num_inference_steps=30, | |
**kwargs, | |
): | |
self.set_scale(scale) | |
num_prompts = faceid_embeds.size(0) | |
if prompt is None: | |
prompt = "best quality, high quality" | |
if negative_prompt is None: | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
if not isinstance(prompt, List): | |
prompt = [prompt] * num_prompts | |
if not isinstance(negative_prompt, List): | |
negative_prompt = [negative_prompt] * num_prompts | |
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds) | |
bs_embed, seq_len, _ = image_prompt_embeds.shape | |
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
with torch.inference_mode(): | |
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( | |
prompt, | |
device=self.device, | |
num_images_per_prompt=num_samples, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt, | |
) | |
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) | |
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) | |
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None | |
images = self.pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
**kwargs, | |
).images | |
return images | |
class IPAdapterFaceIDPlus: | |
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, lora_rank=128, num_tokens=4, torch_dtype=torch.float16): | |
self.device = device | |
self.image_encoder_path = image_encoder_path | |
self.ip_ckpt = ip_ckpt | |
self.lora_rank = lora_rank | |
self.num_tokens = num_tokens | |
self.torch_dtype = torch_dtype | |
self.pipe = sd_pipe.to(self.device) | |
self.set_ip_adapter() | |
# load image encoder | |
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to( | |
self.device, dtype=self.torch_dtype | |
) | |
self.clip_image_processor = CLIPImageProcessor() | |
# image proj model | |
self.image_proj_model = self.init_proj() | |
self.load_ip_adapter() | |
def init_proj(self): | |
image_proj_model = ProjPlusModel( | |
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
id_embeddings_dim=512, | |
clip_embeddings_dim=self.image_encoder.config.hidden_size, | |
num_tokens=self.num_tokens, | |
).to(self.device, dtype=self.torch_dtype) | |
return image_proj_model | |
def set_ip_adapter(self): | |
unet = self.pipe.unet | |
attn_procs = {} | |
for name in unet.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = unet.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = unet.config.block_out_channels[block_id] | |
if cross_attention_dim is None: | |
attn_procs[name] = LoRAAttnProcessor( | |
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank, | |
).to(self.device, dtype=self.torch_dtype) | |
else: | |
attn_procs[name] = LoRAIPAttnProcessor( | |
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens, | |
).to(self.device, dtype=self.torch_dtype) | |
unet.set_attn_processor(attn_procs) | |
def load_ip_adapter(self): | |
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors": | |
state_dict = {"image_proj": {}, "ip_adapter": {}} | |
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
if key.startswith("image_proj."): | |
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) | |
elif key.startswith("ip_adapter."): | |
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) | |
else: | |
state_dict = torch.load(self.ip_ckpt, map_location="cpu") | |
self.image_proj_model.load_state_dict(state_dict["image_proj"]) | |
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) | |
ip_layers.load_state_dict(state_dict["ip_adapter"]) | |
def get_image_embeds(self, faceid_embeds, face_image, s_scale, shortcut): | |
if isinstance(face_image, Image.Image): | |
pil_image = [face_image] | |
clip_image = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values | |
clip_image = clip_image.to(self.device, dtype=self.torch_dtype) | |
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] | |
uncond_clip_image_embeds = self.image_encoder( | |
torch.zeros_like(clip_image), output_hidden_states=True | |
).hidden_states[-2] | |
faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype) | |
image_prompt_embeds = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale) | |
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale) | |
return image_prompt_embeds, uncond_image_prompt_embeds | |
def set_scale(self, scale): | |
for attn_processor in self.pipe.unet.attn_processors.values(): | |
if isinstance(attn_processor, LoRAIPAttnProcessor): | |
attn_processor.scale = scale | |
def generate( | |
self, | |
face_image=None, | |
faceid_embeds=None, | |
prompt=None, | |
negative_prompt=None, | |
scale=1.0, | |
num_samples=4, | |
seed=None, | |
guidance_scale=7.5, | |
num_inference_steps=30, | |
s_scale=1.0, | |
shortcut=False, | |
**kwargs, | |
): | |
self.set_scale(scale) | |
num_prompts = faceid_embeds.size(0) | |
if prompt is None: | |
prompt = "best quality, high quality" | |
if negative_prompt is None: | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
if not isinstance(prompt, List): | |
prompt = [prompt] * num_prompts | |
if not isinstance(negative_prompt, List): | |
negative_prompt = [negative_prompt] * num_prompts | |
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut) | |
bs_embed, seq_len, _ = image_prompt_embeds.shape | |
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
with torch.inference_mode(): | |
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( | |
prompt, | |
device=self.device, | |
num_images_per_prompt=num_samples, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt, | |
) | |
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) | |
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) | |
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None | |
images = self.pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
**kwargs, | |
).images | |
return images | |
class IPAdapterFaceIDXL(IPAdapterFaceID): | |
"""SDXL""" | |
def generate( | |
self, | |
faceid_embeds=None, | |
prompt=None, | |
negative_prompt=None, | |
scale=1.0, | |
num_samples=4, | |
seed=None, | |
num_inference_steps=30, | |
**kwargs, | |
): | |
self.set_scale(scale) | |
num_prompts = faceid_embeds.size(0) | |
if prompt is None: | |
prompt = "best quality, high quality" | |
if negative_prompt is None: | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
if not isinstance(prompt, List): | |
prompt = [prompt] * num_prompts | |
if not isinstance(negative_prompt, List): | |
negative_prompt = [negative_prompt] * num_prompts | |
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds) | |
bs_embed, seq_len, _ = image_prompt_embeds.shape | |
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
with torch.inference_mode(): | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = self.pipe.encode_prompt( | |
prompt, | |
num_images_per_prompt=num_samples, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt, | |
) | |
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) | |
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) | |
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None | |
images = self.pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
**kwargs, | |
).images | |
return images |