import gradio as gr from transformers import AutoModel, AutoTokenizer from sklearn.neighbors import NearestNeighbors title = "Temporal evolution of word association (Overselling :P)" description = "Based on TimeLMs which is a RoBERTa model finetuned on tweets at periodic interval" article = "This outputs the top 500 similar tokens to the input word, as a list. Stay tuned for more info" available_models = ['2019', '2020', '2022' ] model_2019 = AutoModel.from_pretrained('cardiffnlp/twitter-roberta-base-2019-90m') tokenizers_2019 = AutoTokenizer.from_pretrained('cardiffnlp/twitter-roberta-base-2019-90m') embedding_matrix_2019 = model_2019.embeddings.word_embeddings.weight embedding_matrix_2019 = embedding_matrix_2019.detach().numpy() knn_model_2019 = NearestNeighbors(n_neighbors=500, metric='cosine', algorithm='auto', n_jobs=3) nbrs_2019 = knn_model_2019.fit(embedding_matrix_2019) distances_2019, indices_2019 = nbrs_2019.kneighbors(embedding_matrix_2019) model_2020 = AutoModel.from_pretrained('cardiffnlp/twitter-roberta-base-jun2020') tokenizers_2020 = AutoTokenizer.from_pretrained('cardiffnlp/twitter-roberta-base-jun2020') embedding_matrix_2020 = model_2020.embeddings.word_embeddings.weight embedding_matrix_2020 = embedding_matrix_2020.detach().numpy() knn_model_2020 = NearestNeighbors(n_neighbors=500, metric='cosine', algorithm='auto', n_jobs=3) nbrs_2020 = knn_model_2020.fit(embedding_matrix_2020) distances_2020, indices_2020 = nbrs_2020.kneighbors(embedding_matrix_2020) model_2022 = AutoModel.from_pretrained('cardiffnlp/twitter-roberta-base-2022-154m') tokenizers_2022 = AutoTokenizer.from_pretrained('cardiffnlp/twitter-roberta-base-2022-154m') embedding_matrix_2022 = model_2022.embeddings.word_embeddings.weight embedding_matrix_2022 = embedding_matrix_2022.detach().numpy() knn_model_2022 = NearestNeighbors(n_neighbors=500, metric='cosine', algorithm='auto', n_jobs=3) nbrs_2022 = knn_model_2022.fit(embedding_matrix_2022) distances_2022, indices_2022 = nbrs_2020.kneighbors(embedding_matrix_2022) title = "How does a word's meaning change with time?" def topk(word,model): outs = [] if model == '2019': index = tokenizers_2019.encode(f'{word}') print(index) for i in indices_2019[index[1]]: outs.append(tokenizers_2019.decode(i)) # print(tokenizers_2019.decode(i)) return outs if model == '2020': index = tokenizers_2020.encode(f'{word}') print(index) for i in indices_2020[index[1]]: outs.append(tokenizers_2020.decode(i)) # print(tokenizers_2020.decode(i)) return outs if model == '2022': index = tokenizers_2022.encode(f'{word}') print(index) for i in indices_2022[index[1]]: outs.append(tokenizers_2022.decode(i)) # print(tokenizers_2022decode(i)) return outs # with gr.Blocks() as demo: # gr.Markdown(f" # {title}") # # gr.Markdown(f" ## {description1}") # # gr.Markdown(f"{description2}") # # gr.Markdown(f"{description3}") # with gr.Row(): # word = gr.Textbox(label="Word") # with gr.Row(): # greet_btn = gr.Button("Compute") # with gr.Row(): # greet_btn.click(fn=topk, inputs=[word,gr.Dropdown(models)], outputs=gr.outputs.Textbox()) # demo.launch() interface = gr.Interface(fn=topk, inputs=[gr.Textbox(label="Word"), gr.Dropdown(available_models)], outputs=gr.outputs.Textbox(), title = title, description = description, article = article) interface.launch()