radames commited on
Commit
f578dc2
·
1 Parent(s): 1ae13ab
Files changed (1) hide show
  1. app.py +11 -8
app.py CHANGED
@@ -28,6 +28,7 @@ print(f"low memory: {LOW_MEMORY}")
28
 
29
 
30
  model = "stabilityai/stable-diffusion-xl-base-1.0"
 
31
  # vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
32
  scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
33
  controlnet = ControlNetModel.from_pretrained(
@@ -132,12 +133,11 @@ with gr.Blocks(css=css) as demo:
132
  gr.Markdown(
133
  """
134
  # Enhance This
135
- ### DemoFusion SDXL
136
 
137
- [DemoFusion](https://ruoyidu.github.io/demofusion/demofusion.html) enables higher-resolution image generation.
138
  You can upload an initial image and prompt to generate an enhanced version.
139
- [Duplicate Space](https://huggingface.co/spaces/radames/Enhance-This-DemoFusion-SDXL?duplicate=true) to avoid the queue.
140
- GPU Time Comparison: T4: ~276s - A10G: ~113.6s A100: ~43.5s RTX 4090: ~48.1s
141
 
142
  <small>
143
  <b>Notes</b> The author advises against the term "super resolution" because it's more like image-to-image generation than enhancement, but it's still a lot of fun!
@@ -179,7 +179,7 @@ GPU Time Comparison: T4: ~276s - A10G: ~113.6s A100: ~43.5s RTX 4090: ~48.1s
179
  value=2,
180
  step=1,
181
  label="Magnification Scale",
182
- # interactive=False,
183
  )
184
  controlnet_conditioning_scale = gr.Slider(
185
  minimum=0,
@@ -212,7 +212,8 @@ GPU Time Comparison: T4: ~276s - A10G: ~113.6s A100: ~43.5s RTX 4090: ~48.1s
212
 
213
  btn = gr.Button()
214
  with gr.Column(scale=2):
215
- image_slider = ImageSlider(position=0.5)
 
216
  inputs = [
217
  image_input,
218
  prompt,
@@ -226,7 +227,9 @@ GPU Time Comparison: T4: ~276s - A10G: ~113.6s A100: ~43.5s RTX 4090: ~48.1s
226
  controlnet_end,
227
  ]
228
  outputs = [image_slider]
229
- btn.click(predict, inputs=inputs, outputs=outputs, concurrency_limit=1)
 
 
230
  gr.Examples(
231
  fn=predict,
232
  examples=[
@@ -297,7 +300,7 @@ GPU Time Comparison: T4: ~276s - A10G: ~113.6s A100: ~43.5s RTX 4090: ~48.1s
297
  5532144938416372000,
298
  0.101,
299
  25.206,
300
- 4.64,
301
  0.8,
302
  0.0,
303
  1.0,
 
28
 
29
 
30
  model = "stabilityai/stable-diffusion-xl-base-1.0"
31
+ # model = "stabilityai/sdxl-turbo"
32
  # vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
33
  scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
34
  controlnet = ControlNetModel.from_pretrained(
 
133
  gr.Markdown(
134
  """
135
  # Enhance This
136
+ ### HiDiffusion SDXL
137
 
138
+ [HiDiffusion](https://github.com/megvii-research/HiDiffusion) enables higher-resolution image generation.
139
  You can upload an initial image and prompt to generate an enhanced version.
140
+ [Duplicate Space](https://huggingface.co/spaces/radames/Enhance-This-HiDiffusion-SDXL?duplicate=true) to avoid the queue.
 
141
 
142
  <small>
143
  <b>Notes</b> The author advises against the term "super resolution" because it's more like image-to-image generation than enhancement, but it's still a lot of fun!
 
179
  value=2,
180
  step=1,
181
  label="Magnification Scale",
182
+ interactive=False,
183
  )
184
  controlnet_conditioning_scale = gr.Slider(
185
  minimum=0,
 
212
 
213
  btn = gr.Button()
214
  with gr.Column(scale=2):
215
+ with gr.Group():
216
+ image_slider = ImageSlider(position=0.5)
217
  inputs = [
218
  image_input,
219
  prompt,
 
227
  controlnet_end,
228
  ]
229
  outputs = [image_slider]
230
+ btn.click(lambda x: None, inputs=None, outputs=image_slider).then(
231
+ predict, inputs=inputs, outputs=outputs, concurrency_limit=1
232
+ )
233
  gr.Examples(
234
  fn=predict,
235
  examples=[
 
300
  5532144938416372000,
301
  0.101,
302
  25.206,
303
+ 4,
304
  0.8,
305
  0.0,
306
  1.0,