import spaces import gradio as gr from gradio_imageslider import ImageSlider import torch torch.jit.script = lambda f: f from hidiffusion import apply_hidiffusion from diffusers import ( ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, DDIMScheduler, ) from controlnet_aux import AnylineDetector from compel import Compel, ReturnedEmbeddingsType from PIL import Image import os import time import numpy as np IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1" IS_SPACE = os.environ.get("SPACE_ID", None) is not None device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1" print(f"device: {device}") print(f"dtype: {dtype}") print(f"low memory: {LOW_MEMORY}") model = "stabilityai/stable-diffusion-xl-base-1.0" # model = "stabilityai/sdxl-turbo" # vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype) scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler") # controlnet = ControlNetModel.from_pretrained( # "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16 # ) controlnet = ControlNetModel.from_pretrained( "TheMistoAI/MistoLine", torch_dtype=torch.float16, revision="refs/pr/3", variant="fp16", ) pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained( model, controlnet=controlnet, torch_dtype=dtype, variant="fp16", use_safetensors=True, scheduler=scheduler, ) compel = Compel( tokenizer=[pipe.tokenizer, pipe.tokenizer_2], text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True], ) #pipe = pipe.to(device) if not IS_SPACES_ZERO: apply_hidiffusion(pipe) # pipe.enable_xformers_memory_efficient_attention() pipe.enable_model_cpu_offload() pipe.enable_vae_tiling() anyline = AnylineDetector.from_pretrained( "TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline" ).to("cpu") #.to(device) def pad_image(image): w, h = image.size if w == h: return image elif w > h: new_image = Image.new(image.mode, (w, w), (0, 0, 0)) pad_w = 0 pad_h = (w - h) // 2 new_image.paste(image, (0, pad_h)) return new_image else: new_image = Image.new(image.mode, (h, h), (0, 0, 0)) pad_w = (h - w) // 2 pad_h = 0 new_image.paste(image, (pad_w, 0)) return new_image @spaces.GPU(duration=120) def predict( input_image, prompt, negative_prompt, seed, guidance_scale=8.5, scale=2, controlnet_conditioning_scale=0.5, strength=1.0, controlnet_start=0.0, controlnet_end=1.0, guassian_sigma=2.0, intensity_threshold=3, progress=gr.Progress(track_tqdm=True), ): global pipe global anyline pipe = pipe.to(device) anyline.to(device) if IS_SPACES_ZERO: apply_hidiffusion(pipe) if input_image is None: raise gr.Error("Please upload an image.") padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB") conditioning, pooled = compel([prompt, negative_prompt]) generator = torch.manual_seed(seed) last_time = time.time() anyline_image = anyline( padded_image, detect_resolution=1280, guassian_sigma=max(0.01, guassian_sigma), intensity_threshold=intensity_threshold, ) images = pipe( image=padded_image, control_image=anyline_image, strength=strength, prompt_embeds=conditioning[0:1], pooled_prompt_embeds=pooled[0:1], negative_prompt_embeds=conditioning[1:2], negative_pooled_prompt_embeds=pooled[1:2], width=1024 * scale, height=1024 * scale, controlnet_conditioning_scale=float(controlnet_conditioning_scale), controlnet_start=float(controlnet_start), controlnet_end=float(controlnet_end), generator=generator, num_inference_steps=30, guidance_scale=guidance_scale, eta=1.0, ) print(f"Time taken: {time.time() - last_time}") return (padded_image, images.images[0]), padded_image, anyline_image css = """ #intro{ # max-width: 32rem; # text-align: center; # margin: 0 auto; } """ with gr.Blocks(css=css) as demo: gr.Markdown( """ # Enhance This ### HiDiffusion SDXL [HiDiffusion](https://github.com/megvii-research/HiDiffusion) enables higher-resolution image generation. You can upload an initial image and prompt to generate an enhanced version. SDXL Controlnet [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLine) [Duplicate Space](https://huggingface.co/spaces/radames/Enhance-This-HiDiffusion-SDXL?duplicate=true) to avoid the queue. Notes The author advises against the term "super resolution" because it's more like image-to-image generation than enhancement, but it's still a lot of fun! """, elem_id="intro", ) with gr.Row(): with gr.Column(scale=1): image_input = gr.Image(type="pil", label="Input Image") prompt = gr.Textbox( label="Prompt", info="The prompt is very important to get the desired results. Please try to describe the image as best as you can. Accepts Compel Syntax", ) negative_prompt = gr.Textbox( label="Negative Prompt", value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic", ) seed = gr.Slider( minimum=0, maximum=2**64 - 1, value=1415926535897932, step=1, label="Seed", randomize=True, ) with gr.Accordion(label="Advanced", open=False): guidance_scale = gr.Slider( minimum=0, maximum=50, value=8.5, step=0.001, label="Guidance Scale", ) scale = gr.Slider( minimum=1, maximum=5, value=2, step=1, label="Magnification Scale", interactive=not IS_SPACE, ) controlnet_conditioning_scale = gr.Slider( minimum=0, maximum=1, step=0.001, value=0.5, label="ControlNet Conditioning Scale", ) strength = gr.Slider( minimum=0, maximum=1, step=0.001, value=1, label="Strength", ) controlnet_start = gr.Slider( minimum=0, maximum=1, step=0.001, value=0.0, label="ControlNet Start", ) controlnet_end = gr.Slider( minimum=0.0, maximum=1.0, step=0.001, value=1.0, label="ControlNet End", ) guassian_sigma = gr.Slider( minimum=0.01, maximum=10.0, step=0.1, value=2.0, label="(Anyline) Guassian Sigma", ) intensity_threshold = gr.Slider( minimum=0, maximum=255, step=1, value=3, label="(Anyline) Intensity Threshold", ) btn = gr.Button() with gr.Column(scale=2): with gr.Group(): image_slider = ImageSlider(position=0.5) with gr.Row(): padded_image = gr.Image(type="pil", label="Padded Image") anyline_image = gr.Image(type="pil", label="Anyline Image") inputs = [ image_input, prompt, negative_prompt, seed, guidance_scale, scale, controlnet_conditioning_scale, strength, controlnet_start, controlnet_end, guassian_sigma, intensity_threshold, ] outputs = [image_slider, padded_image, anyline_image] btn.click(lambda x: None, inputs=None, outputs=image_slider).then( fn=predict, inputs=inputs, outputs=outputs ) gr.Examples( fn=predict, inputs=inputs, outputs=outputs, examples=[ [ "./examples/lara.jpeg", "photography of lara croft 8k high definition award winning", "blurry, ugly, duplicate, poorly drawn, deformed, mosaic", 5436236241, 8.5, 2, 0.8, 1.0, 0.0, 0.9, 2, 3, ], [ "./examples/cybetruck.jpeg", "photo of tesla cybertruck futuristic car 8k high definition on a sand dune in mars, future", "blurry, ugly, duplicate, poorly drawn, deformed, mosaic", 383472451451, 8.5, 2, 0.8, 0.8, 0.0, 0.9, 2, 3, ], [ "./examples/jesus.png", "a photorealistic painting of Jesus Christ, 4k high definition", "blurry, ugly, duplicate, poorly drawn, deformed, mosaic", 13317204146129588000, 8.5, 2, 0.8, 0.8, 0.0, 0.9, 2, 3, ], [ "./examples/anna-sullivan-DioLM8ViiO8-unsplash.jpg", "A crowded stadium with enthusiastic fans watching a daytime sporting event, the stands filled with colorful attire and the sun casting a warm glow", "blurry, ugly, duplicate, poorly drawn, deformed, mosaic", 5623124123512, 8.5, 2, 0.8, 0.8, 0.0, 0.9, 2, 3, ], [ "./examples/img_aef651cb-2919-499d-aa49-6d4e2e21a56e_1024.jpg", "a large red flower on a black background 4k high definition", "blurry, ugly, duplicate, poorly drawn, deformed, mosaic", 23123412341234, 8.5, 2, 0.8, 0.8, 0.0, 0.9, 2, 3, ], [ "./examples/huggingface.jpg", "photo realistic huggingface human emoji costume, round, yellow, (human skin)+++ (human texture)+++", "blurry, ugly, duplicate, poorly drawn, deformed, mosaic, emoji cartoon, drawing, pixelated", 12312353423, 15.206, 2, 0.364, 0.8, 0.0, 0.9, 2, 3, ], ], cache_examples="lazy", ) demo.queue(api_open=False) demo.launch(show_api=False)