""" Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ from tempfile import NamedTemporaryFile import torch import gradio as gr from share_btn import community_icon_html, loading_icon_html, share_js, css from audiocraft.data.audio_utils import convert_audio from audiocraft.data.audio import audio_write from audiocraft.models import MusicGen MODEL = None def load_model(): print("Loading model") return MusicGen.get_pretrained("melody") def predict(texts, melodies): global MODEL if MODEL is None: MODEL = load_model() duration = 12 MODEL.set_generation_params(duration=duration) print(texts, melodies) processed_melodies = [] target_sr = 32000 target_ac = 1 for melody in melodies: if melody is None: processed_melodies.append(None) else: sr, melody = ( melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t(), ) if melody.dim() == 1: melody = melody[None] melody = melody[..., : int(sr * duration)] melody = convert_audio(melody, sr, target_sr, target_ac) processed_melodies.append(melody) outputs = MODEL.generate_with_chroma( descriptions=texts, melody_wavs=processed_melodies, melody_sample_rate=target_sr, progress=False, ) outputs = outputs.detach().cpu().float() out_files = [] for output in outputs: with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: audio_write( file.name, output, MODEL.sample_rate, strategy="loudness", add_suffix=False, ) waveform_video = gr.make_waveform(file.name) out_files.append(waveform_video) return [out_files, melodies] def toggle(choice): if choice == "mic": return gr.update(source="microphone", value=None, label="Microphone") else: return gr.update(source="upload", value=None, label="File") with gr.Blocks(css=css) as demo: gr.Markdown( """ # MusicGen This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
Duplicate Space for longer sequences, more control and no queue.

""" ) with gr.Row(): with gr.Column(): with gr.Row(): text = gr.Text( label="Describe your music", lines=2, interactive=True, elem_id="text-input", ) with gr.Column(): radio = gr.Radio( ["file", "mic"], value="file", label="Melody Condition (optional) File or Mic", ) melody = gr.Audio( source="upload", type="numpy", label="File", interactive=True, elem_id="melody-input", ) with gr.Row(): submit = gr.Button("Generate") with gr.Column(): output = gr.Video(label="Generated Music", elem_id="generated-video") output_melody = gr.Audio(label="Melody ", elem_id="melody-output") with gr.Row(visible=False) as share_row: with gr.Group(elem_id="share-btn-container"): community_icon = gr.HTML(community_icon_html) loading_icon = gr.HTML(loading_icon_html) share_button = gr.Button("Share to community", elem_id="share-btn") share_button.click(None, [], [], _js=share_js) submit.click( lambda x: gr.update(visible=False), None, [share_row], queue=False, show_progress=False, ).then( predict, inputs=[text, melody], outputs=[output, output_melody], batch=True, max_batch_size=12, ).then( lambda x: gr.update(visible=True), None, [share_row], queue=False, show_progress=False, ) radio.change(toggle, radio, [melody], queue=False, show_progress=False) gr.Examples( fn=predict, examples=[ [ "An 80s driving pop song with heavy drums and synth pads in the background", "./assets/bach.mp3", ], [ "A cheerful country song with acoustic guitars", "./assets/bolero_ravel.mp3", ], [ "90s rock song with electric guitar and heavy drums", None, ], [ "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130", "./assets/bach.mp3", ], [ "lofi slow bpm electro chill with organic samples", None, ], ], inputs=[text, melody], outputs=[output], ) gr.Markdown( """ ### More details The model will generate 12 seconds of audio based on the description you provided. You can optionaly provide a reference audio from which a broad melody will be extracted. The model will then try to follow both the description and melody provided. All samples are generated with the `melody` model. You can also use your own GPU or a Google Colab by following the instructions on our repo. See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft) for more details. """ ) demo.queue(max_size=15).launch()