Spaces:
Running
on
A100
Running
on
A100
import asyncio | |
import json | |
import logging | |
import traceback | |
from pydantic import BaseModel | |
from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import StreamingResponse, JSONResponse | |
from fastapi.staticfiles import StaticFiles | |
from diffusers import DiffusionPipeline, AutoencoderTiny | |
import torch | |
from PIL import Image | |
import numpy as np | |
import gradio as gr | |
import io | |
import uuid | |
import os | |
import time | |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0)) | |
TIMEOUT = float(os.environ.get("TIMEOUT", 0)) | |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) | |
print(f"TIMEOUT: {TIMEOUT}") | |
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}") | |
print(f"MAX_QUEUE_SIZE: {MAX_QUEUE_SIZE}") | |
if SAFETY_CHECKER == "True": | |
pipe = DiffusionPipeline.from_pretrained( | |
"SimianLuo/LCM_Dreamshaper_v7", | |
custom_pipeline="latent_consistency_img2img.py", | |
custom_revision="main", | |
torch_dtype=torch.float32 | |
) | |
else: | |
pipe = DiffusionPipeline.from_pretrained( | |
"SimianLuo/LCM_Dreamshaper_v7", | |
safety_checker=None, | |
custom_pipeline="latent_consistency_img2img.py", | |
custom_revision="main", | |
torch_dtype=torch.float32 | |
) | |
#TODO try to use tiny VAE | |
# pipe.vae = AutoencoderTiny.from_pretrained( | |
# "madebyollin/taesd", torch_dtype=torch.float16, use_safetensors=True | |
# ) | |
pipe.set_progress_bar_config(disable=True) | |
pipe.to(torch_device="cuda", torch_dtype=torch.float32) | |
pipe.unet.to(memory_format=torch.channels_last) | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
user_queue_map = {} | |
# for torch.compile | |
pipe(prompt="warmup", image=[Image.new("RGB", (512, 512))]) | |
def predict(input_image, prompt, guidance_scale=8.0, strength=0.5, seed=2159232): | |
generator = torch.manual_seed(seed) | |
# Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps. | |
num_inference_steps = 4 | |
results = pipe( | |
prompt=prompt, | |
# generator=generator, | |
image=input_image, | |
strength=strength, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
lcm_origin_steps=30, | |
output_type="pil", | |
) | |
nsfw_content_detected = ( | |
results.nsfw_content_detected[0] | |
if "nsfw_content_detected" in results | |
else False | |
) | |
if nsfw_content_detected: | |
return None | |
return results.images[0] | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
class InputParams(BaseModel): | |
seed: int | |
prompt: str | |
strength: float | |
guidance_scale: float | |
async def websocket_endpoint(websocket: WebSocket): | |
await websocket.accept() | |
if MAX_QUEUE_SIZE > 0 and len(user_queue_map) >= MAX_QUEUE_SIZE: | |
print("Server is full") | |
await websocket.send_json({"status": "error", "message": "Server is full"}) | |
await websocket.close() | |
return | |
try: | |
uid = str(uuid.uuid4()) | |
print(f"New user connected: {uid}") | |
await websocket.send_json( | |
{"status": "success", "message": "Connected", "userId": uid} | |
) | |
params = await websocket.receive_json() | |
params = InputParams(**params) | |
user_queue_map[uid] = { | |
"queue": asyncio.Queue(), | |
"params": params, | |
} | |
await websocket.send_json( | |
{"status": "start", "message": "Start Streaming", "userId": uid} | |
) | |
await handle_websocket_data(websocket, uid) | |
except WebSocketDisconnect as e: | |
logging.error(f"WebSocket Error: {e}, {uid}") | |
traceback.print_exc() | |
finally: | |
print(f"User disconnected: {uid}") | |
queue_value = user_queue_map.pop(uid, None) | |
queue = queue_value.get("queue", None) | |
if queue: | |
while not queue.empty(): | |
try: | |
queue.get_nowait() | |
except asyncio.QueueEmpty: | |
continue | |
async def get_queue_size(): | |
queue_size = len(user_queue_map) | |
return JSONResponse({"queue_size": queue_size}) | |
async def stream(user_id: uuid.UUID): | |
uid = str(user_id) | |
try: | |
user_queue = user_queue_map[uid] | |
queue = user_queue["queue"] | |
params = user_queue["params"] | |
seed = params.seed | |
prompt = params.prompt | |
strength = params.strength | |
guidance_scale = params.guidance_scale | |
async def generate(): | |
while True: | |
input_image = await queue.get() | |
if input_image is None: | |
continue | |
image = predict(input_image, prompt, guidance_scale, strength, seed) | |
if image is None: | |
continue | |
frame_data = io.BytesIO() | |
image.save(frame_data, format="JPEG") | |
frame_data = frame_data.getvalue() | |
if frame_data is not None and len(frame_data) > 0: | |
yield b"--frame\r\nContent-Type: image/jpeg\r\n\r\n" + frame_data + b"\r\n" | |
await asyncio.sleep(1.0 / 120.0) | |
return StreamingResponse( | |
generate(), media_type="multipart/x-mixed-replace;boundary=frame" | |
) | |
except Exception as e: | |
logging.error(f"Streaming Error: {e}, {user_queue_map}") | |
traceback.print_exc() | |
return HTTPException(status_code=404, detail="User not found") | |
async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID): | |
uid = str(user_id) | |
user_queue = user_queue_map[uid] | |
queue = user_queue["queue"] | |
if not queue: | |
return HTTPException(status_code=404, detail="User not found") | |
last_time = time.time() | |
try: | |
while True: | |
data = await websocket.receive_bytes() | |
pil_image = Image.open(io.BytesIO(data)) | |
while not queue.empty(): | |
try: | |
queue.get_nowait() | |
except asyncio.QueueEmpty: | |
continue | |
await queue.put(pil_image) | |
if TIMEOUT > 0 and time.time() - last_time > TIMEOUT: | |
await websocket.send_json( | |
{ | |
"status": "timeout", | |
"message": "Your session has ended", | |
"userId": uid, | |
} | |
) | |
await websocket.close() | |
return | |
except Exception as e: | |
logging.error(f"Error: {e}") | |
traceback.print_exc() | |
app.mount("/", StaticFiles(directory="img2img", html=True), name="public") |