Spaces:
Running
on
A100
Running
on
A100
# Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion | |
# and https://github.com/hojonathanho/diffusion | |
import math | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderTiny, | |
AutoencoderKL, | |
ConfigMixin, | |
DiffusionPipeline, | |
SchedulerMixin, | |
UNet2DConditionModel, | |
logging, | |
) | |
from diffusers.configuration_utils import register_to_config | |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.pipelines.stable_diffusion.safety_checker import ( | |
StableDiffusionSafetyChecker, | |
) | |
from diffusers.utils import BaseOutput | |
from diffusers.utils.torch_utils import randn_tensor | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class LatentConsistencyModelImg2ImgPipeline(DiffusionPipeline): | |
_optional_components = ["scheduler"] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: "LCMSchedulerWithTimestamp", | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPImageProcessor, | |
requires_safety_checker: bool = True, | |
): | |
super().__init__() | |
scheduler = ( | |
scheduler | |
if scheduler is not None | |
else LCMSchedulerWithTimestamp( | |
beta_start=0.00085, | |
beta_end=0.0120, | |
beta_schedule="scaled_linear", | |
prediction_type="epsilon", | |
) | |
) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
prompt_embeds: None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
""" | |
if prompt is not None and isinstance(prompt, str): | |
pass | |
elif prompt is not None and isinstance(prompt, list): | |
len(prompt) | |
else: | |
prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer( | |
prompt, padding="longest", return_tensors="pt" | |
).input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[ | |
-1 | |
] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if ( | |
hasattr(self.text_encoder.config, "use_attention_mask") | |
and self.text_encoder.config.use_attention_mask | |
): | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
prompt_embeds = prompt_embeds[0] | |
if self.text_encoder is not None: | |
prompt_embeds_dtype = self.text_encoder.dtype | |
elif self.unet is not None: | |
prompt_embeds_dtype = self.unet.dtype | |
else: | |
prompt_embeds_dtype = prompt_embeds.dtype | |
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view( | |
bs_embed * num_images_per_prompt, seq_len, -1 | |
) | |
# Don't need to get uncond prompt embedding because of LCM Guided Distillation | |
return prompt_embeds | |
def run_safety_checker(self, image, device, dtype): | |
if self.safety_checker is None: | |
has_nsfw_concept = None | |
else: | |
if torch.is_tensor(image): | |
feature_extractor_input = self.image_processor.postprocess( | |
image, output_type="pil" | |
) | |
else: | |
feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
safety_checker_input = self.feature_extractor( | |
feature_extractor_input, return_tensors="pt" | |
).to(device) | |
image, has_nsfw_concept = self.safety_checker( | |
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
) | |
return image, has_nsfw_concept | |
def prepare_latents( | |
self, | |
image, | |
timestep, | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
dtype, | |
device, | |
latents=None, | |
generator=None, | |
): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
image = image.to(device=device, dtype=dtype) | |
# batch_size = batch_size * num_images_per_prompt | |
if image.shape[1] == 4: | |
init_latents = image | |
else: | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
elif isinstance(generator, list): | |
if isinstance(self.vae, AutoencoderTiny): | |
init_latents = [ | |
self.vae.encode(image[i : i + 1]).latents | |
for i in range(batch_size) | |
] | |
else: | |
init_latents = [ | |
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) | |
for i in range(batch_size) | |
] | |
init_latents = torch.cat(init_latents, dim=0) | |
else: | |
if isinstance(self.vae, AutoencoderTiny): | |
init_latents = self.vae.encode(image).latents | |
else: | |
init_latents = self.vae.encode(image).latent_dist.sample(generator) | |
init_latents = self.vae.config.scaling_factor * init_latents | |
if ( | |
batch_size > init_latents.shape[0] | |
and batch_size % init_latents.shape[0] == 0 | |
): | |
# expand init_latents for batch_size | |
( | |
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" | |
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | |
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | |
" your script to pass as many initial images as text prompts to suppress this warning." | |
) | |
# deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) | |
additional_image_per_prompt = batch_size // init_latents.shape[0] | |
init_latents = torch.cat( | |
[init_latents] * additional_image_per_prompt, dim=0 | |
) | |
elif ( | |
batch_size > init_latents.shape[0] | |
and batch_size % init_latents.shape[0] != 0 | |
): | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
init_latents = torch.cat([init_latents], dim=0) | |
shape = init_latents.shape | |
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
# get latents | |
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
latents = init_latents | |
if latents is None: | |
latents = torch.randn(shape, dtype=dtype).to(device) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32): | |
""" | |
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
Args: | |
timesteps: torch.Tensor: generate embedding vectors at these timesteps | |
embedding_dim: int: dimension of the embeddings to generate | |
dtype: data type of the generated embeddings | |
Returns: | |
embedding vectors with shape `(len(timesteps), embedding_dim)` | |
""" | |
assert len(w.shape) == 1 | |
w = w * 1000.0 | |
half_dim = embedding_dim // 2 | |
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
emb = w.to(dtype)[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0, 1)) | |
assert emb.shape == (w.shape[0], embedding_dim) | |
return emb | |
def get_timesteps(self, num_inference_steps, strength, device): | |
# get the original timestep using init_timestep | |
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
t_start = max(num_inference_steps - init_timestep, 0) | |
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
return timesteps, num_inference_steps - t_start | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
image: PipelineImageInput = None, | |
strength: float = 0.8, | |
height: Optional[int] = 768, | |
width: Optional[int] = 768, | |
guidance_scale: float = 7.5, | |
num_images_per_prompt: Optional[int] = 1, | |
latents: Optional[torch.FloatTensor] = None, | |
generator: Optional[torch.Generator] = None, | |
num_inference_steps: int = 4, | |
lcm_origin_steps: int = 50, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
): | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# do_classifier_free_guidance = guidance_scale > 0.0 # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG) | |
# 3. Encode input prompt | |
prompt_embeds = self._encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
prompt_embeds=prompt_embeds, | |
) | |
# 3.5 encode image | |
image = self.image_processor.preprocess(image) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(strength, num_inference_steps, lcm_origin_steps) | |
# timesteps = self.scheduler.timesteps | |
# timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, 1.0, device) | |
timesteps = self.scheduler.timesteps | |
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
print("timesteps: ", timesteps) | |
# 5. Prepare latent variable | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
image, | |
latent_timestep, | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
latents, | |
generator | |
) | |
bs = batch_size * num_images_per_prompt | |
# 6. Get Guidance Scale Embedding | |
w = torch.tensor(guidance_scale).repeat(bs) | |
w_embedding = self.get_w_embedding(w, embedding_dim=256).to( | |
device=device, dtype=latents.dtype | |
) | |
# 7. LCM MultiStep Sampling Loop: | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
ts = torch.full((bs,), t, device=device, dtype=torch.long) | |
latents = latents.to(prompt_embeds.dtype) | |
# model prediction (v-prediction, eps, x) | |
model_pred = self.unet( | |
latents, | |
ts, | |
timestep_cond=w_embedding, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents, denoised = self.scheduler.step( | |
model_pred, i, t, latents, return_dict=False | |
) | |
# # call the callback, if provided | |
# if i == len(timesteps) - 1: | |
progress_bar.update() | |
denoised = denoised.to(prompt_embeds.dtype) | |
if not output_type == "latent": | |
image = self.vae.decode( | |
denoised / self.vae.config.scaling_factor, return_dict=False | |
)[0] | |
image, has_nsfw_concept = self.run_safety_checker( | |
image, device, prompt_embeds.dtype | |
) | |
else: | |
image = denoised | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess( | |
image, output_type=output_type, do_denormalize=do_denormalize | |
) | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput( | |
images=image, nsfw_content_detected=has_nsfw_concept | |
) | |
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM | |
class LCMSchedulerOutput(BaseOutput): | |
""" | |
Output class for the scheduler's `step` function output. | |
Args: | |
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
denoising loop. | |
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
The predicted denoised sample `(x_{0})` based on the model output from the current timestep. | |
`pred_original_sample` can be used to preview progress or for guidance. | |
""" | |
prev_sample: torch.FloatTensor | |
denoised: Optional[torch.FloatTensor] = None | |
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar | |
def betas_for_alpha_bar( | |
num_diffusion_timesteps, | |
max_beta=0.999, | |
alpha_transform_type="cosine", | |
): | |
""" | |
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | |
(1-beta) over time from t = [0,1]. | |
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | |
to that part of the diffusion process. | |
Args: | |
num_diffusion_timesteps (`int`): the number of betas to produce. | |
max_beta (`float`): the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. | |
Choose from `cosine` or `exp` | |
Returns: | |
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | |
""" | |
if alpha_transform_type == "cosine": | |
def alpha_bar_fn(t): | |
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 | |
elif alpha_transform_type == "exp": | |
def alpha_bar_fn(t): | |
return math.exp(t * -12.0) | |
else: | |
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}") | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) | |
return torch.tensor(betas, dtype=torch.float32) | |
def rescale_zero_terminal_snr(betas): | |
""" | |
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1) | |
Args: | |
betas (`torch.FloatTensor`): | |
the betas that the scheduler is being initialized with. | |
Returns: | |
`torch.FloatTensor`: rescaled betas with zero terminal SNR | |
""" | |
# Convert betas to alphas_bar_sqrt | |
alphas = 1.0 - betas | |
alphas_cumprod = torch.cumprod(alphas, dim=0) | |
alphas_bar_sqrt = alphas_cumprod.sqrt() | |
# Store old values. | |
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() | |
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() | |
# Shift so the last timestep is zero. | |
alphas_bar_sqrt -= alphas_bar_sqrt_T | |
# Scale so the first timestep is back to the old value. | |
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) | |
# Convert alphas_bar_sqrt to betas | |
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt | |
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod | |
alphas = torch.cat([alphas_bar[0:1], alphas]) | |
betas = 1 - alphas | |
return betas | |
class LCMSchedulerWithTimestamp(SchedulerMixin, ConfigMixin): | |
""" | |
This class modifies LCMScheduler to add a timestamp argument to set_timesteps | |
`LCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with | |
non-Markovian guidance. | |
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
methods the library implements for all schedulers such as loading and saving. | |
Args: | |
num_train_timesteps (`int`, defaults to 1000): | |
The number of diffusion steps to train the model. | |
beta_start (`float`, defaults to 0.0001): | |
The starting `beta` value of inference. | |
beta_end (`float`, defaults to 0.02): | |
The final `beta` value. | |
beta_schedule (`str`, defaults to `"linear"`): | |
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | |
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. | |
trained_betas (`np.ndarray`, *optional*): | |
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. | |
clip_sample (`bool`, defaults to `True`): | |
Clip the predicted sample for numerical stability. | |
clip_sample_range (`float`, defaults to 1.0): | |
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`. | |
set_alpha_to_one (`bool`, defaults to `True`): | |
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step | |
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, | |
otherwise it uses the alpha value at step 0. | |
steps_offset (`int`, defaults to 0): | |
An offset added to the inference steps. You can use a combination of `offset=1` and | |
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable | |
Diffusion. | |
prediction_type (`str`, defaults to `epsilon`, *optional*): | |
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), | |
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen | |
Video](https://imagen.research.google/video/paper.pdf) paper). | |
thresholding (`bool`, defaults to `False`): | |
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such | |
as Stable Diffusion. | |
dynamic_thresholding_ratio (`float`, defaults to 0.995): | |
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. | |
sample_max_value (`float`, defaults to 1.0): | |
The threshold value for dynamic thresholding. Valid only when `thresholding=True`. | |
timestep_spacing (`str`, defaults to `"leading"`): | |
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and | |
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. | |
rescale_betas_zero_snr (`bool`, defaults to `False`): | |
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and | |
dark samples instead of limiting it to samples with medium brightness. Loosely related to | |
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). | |
""" | |
# _compatibles = [e.name for e in KarrasDiffusionSchedulers] | |
order = 1 | |
def __init__( | |
self, | |
num_train_timesteps: int = 1000, | |
beta_start: float = 0.0001, | |
beta_end: float = 0.02, | |
beta_schedule: str = "linear", | |
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, | |
clip_sample: bool = True, | |
set_alpha_to_one: bool = True, | |
steps_offset: int = 0, | |
prediction_type: str = "epsilon", | |
thresholding: bool = False, | |
dynamic_thresholding_ratio: float = 0.995, | |
clip_sample_range: float = 1.0, | |
sample_max_value: float = 1.0, | |
timestep_spacing: str = "leading", | |
rescale_betas_zero_snr: bool = False, | |
): | |
if trained_betas is not None: | |
self.betas = torch.tensor(trained_betas, dtype=torch.float32) | |
elif beta_schedule == "linear": | |
self.betas = torch.linspace( | |
beta_start, beta_end, num_train_timesteps, dtype=torch.float32 | |
) | |
elif beta_schedule == "scaled_linear": | |
# this schedule is very specific to the latent diffusion model. | |
self.betas = ( | |
torch.linspace( | |
beta_start**0.5, | |
beta_end**0.5, | |
num_train_timesteps, | |
dtype=torch.float32, | |
) | |
** 2 | |
) | |
elif beta_schedule == "squaredcos_cap_v2": | |
# Glide cosine schedule | |
self.betas = betas_for_alpha_bar(num_train_timesteps) | |
else: | |
raise NotImplementedError( | |
f"{beta_schedule} does is not implemented for {self.__class__}" | |
) | |
# Rescale for zero SNR | |
if rescale_betas_zero_snr: | |
self.betas = rescale_zero_terminal_snr(self.betas) | |
self.alphas = 1.0 - self.betas | |
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | |
# At every step in ddim, we are looking into the previous alphas_cumprod | |
# For the final step, there is no previous alphas_cumprod because we are already at 0 | |
# `set_alpha_to_one` decides whether we set this parameter simply to one or | |
# whether we use the final alpha of the "non-previous" one. | |
self.final_alpha_cumprod = ( | |
torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] | |
) | |
# standard deviation of the initial noise distribution | |
self.init_noise_sigma = 1.0 | |
# setable values | |
self.num_inference_steps = None | |
self.timesteps = torch.from_numpy( | |
np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64) | |
) | |
def scale_model_input( | |
self, sample: torch.FloatTensor, timestep: Optional[int] = None | |
) -> torch.FloatTensor: | |
""" | |
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
current timestep. | |
Args: | |
sample (`torch.FloatTensor`): | |
The input sample. | |
timestep (`int`, *optional*): | |
The current timestep in the diffusion chain. | |
Returns: | |
`torch.FloatTensor`: | |
A scaled input sample. | |
""" | |
return sample | |
def _get_variance(self, timestep, prev_timestep): | |
alpha_prod_t = self.alphas_cumprod[timestep] | |
alpha_prod_t_prev = ( | |
self.alphas_cumprod[prev_timestep] | |
if prev_timestep >= 0 | |
else self.final_alpha_cumprod | |
) | |
beta_prod_t = 1 - alpha_prod_t | |
beta_prod_t_prev = 1 - alpha_prod_t_prev | |
variance = (beta_prod_t_prev / beta_prod_t) * ( | |
1 - alpha_prod_t / alpha_prod_t_prev | |
) | |
return variance | |
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample | |
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor: | |
""" | |
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the | |
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by | |
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing | |
pixels from saturation at each step. We find that dynamic thresholding results in significantly better | |
photorealism as well as better image-text alignment, especially when using very large guidance weights." | |
https://arxiv.org/abs/2205.11487 | |
""" | |
dtype = sample.dtype | |
batch_size, channels, height, width = sample.shape | |
if dtype not in (torch.float32, torch.float64): | |
sample = ( | |
sample.float() | |
) # upcast for quantile calculation, and clamp not implemented for cpu half | |
# Flatten sample for doing quantile calculation along each image | |
sample = sample.reshape(batch_size, channels * height * width) | |
abs_sample = sample.abs() # "a certain percentile absolute pixel value" | |
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) | |
s = torch.clamp( | |
s, min=1, max=self.config.sample_max_value | |
) # When clamped to min=1, equivalent to standard clipping to [-1, 1] | |
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0 | |
sample = ( | |
torch.clamp(sample, -s, s) / s | |
) # "we threshold xt0 to the range [-s, s] and then divide by s" | |
sample = sample.reshape(batch_size, channels, height, width) | |
sample = sample.to(dtype) | |
return sample | |
def set_timesteps( | |
self, | |
stength, | |
num_inference_steps: int, | |
lcm_origin_steps: int, | |
device: Union[str, torch.device] = None, | |
): | |
""" | |
Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
Args: | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. | |
""" | |
if num_inference_steps > self.config.num_train_timesteps: | |
raise ValueError( | |
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" | |
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" | |
f" maximal {self.config.num_train_timesteps} timesteps." | |
) | |
self.num_inference_steps = num_inference_steps | |
# LCM Timesteps Setting: # Linear Spacing | |
c = self.config.num_train_timesteps // lcm_origin_steps | |
lcm_origin_timesteps = ( | |
np.asarray(list(range(1, int(lcm_origin_steps * stength) + 1))) * c - 1 | |
) # LCM Training Steps Schedule | |
skipping_step = len(lcm_origin_timesteps) // num_inference_steps | |
timesteps = lcm_origin_timesteps[::-skipping_step][ | |
:num_inference_steps | |
] # LCM Inference Steps Schedule | |
self.timesteps = torch.from_numpy(timesteps.copy()).to(device) | |
def get_scalings_for_boundary_condition_discrete(self, t): | |
self.sigma_data = 0.5 # Default: 0.5 | |
# By dividing 0.1: This is almost a delta function at t=0. | |
c_skip = self.sigma_data**2 / ((t / 0.1) ** 2 + self.sigma_data**2) | |
c_out = (t / 0.1) / ((t / 0.1) ** 2 + self.sigma_data**2) ** 0.5 | |
return c_skip, c_out | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
timeindex: int, | |
timestep: int, | |
sample: torch.FloatTensor, | |
eta: float = 0.0, | |
use_clipped_model_output: bool = False, | |
generator=None, | |
variance_noise: Optional[torch.FloatTensor] = None, | |
return_dict: bool = True, | |
) -> Union[LCMSchedulerOutput, Tuple]: | |
""" | |
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
Args: | |
model_output (`torch.FloatTensor`): | |
The direct output from learned diffusion model. | |
timestep (`float`): | |
The current discrete timestep in the diffusion chain. | |
sample (`torch.FloatTensor`): | |
A current instance of a sample created by the diffusion process. | |
eta (`float`): | |
The weight of noise for added noise in diffusion step. | |
use_clipped_model_output (`bool`, defaults to `False`): | |
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary | |
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no | |
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and | |
`use_clipped_model_output` has no effect. | |
generator (`torch.Generator`, *optional*): | |
A random number generator. | |
variance_noise (`torch.FloatTensor`): | |
Alternative to generating noise with `generator` by directly providing the noise for the variance | |
itself. Useful for methods such as [`CycleDiffusion`]. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`. | |
Returns: | |
[`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`: | |
If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a | |
tuple is returned where the first element is the sample tensor. | |
""" | |
if self.num_inference_steps is None: | |
raise ValueError( | |
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
) | |
# 1. get previous step value | |
prev_timeindex = timeindex + 1 | |
if prev_timeindex < len(self.timesteps): | |
prev_timestep = self.timesteps[prev_timeindex] | |
else: | |
prev_timestep = timestep | |
# 2. compute alphas, betas | |
alpha_prod_t = self.alphas_cumprod[timestep] | |
alpha_prod_t_prev = ( | |
self.alphas_cumprod[prev_timestep] | |
if prev_timestep >= 0 | |
else self.final_alpha_cumprod | |
) | |
beta_prod_t = 1 - alpha_prod_t | |
beta_prod_t_prev = 1 - alpha_prod_t_prev | |
# 3. Get scalings for boundary conditions | |
c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep) | |
# 4. Different Parameterization: | |
parameterization = self.config.prediction_type | |
if parameterization == "epsilon": # noise-prediction | |
pred_x0 = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt() | |
elif parameterization == "sample": # x-prediction | |
pred_x0 = model_output | |
elif parameterization == "v_prediction": # v-prediction | |
pred_x0 = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output | |
# 4. Denoise model output using boundary conditions | |
denoised = c_out * pred_x0 + c_skip * sample | |
# 5. Sample z ~ N(0, I), For MultiStep Inference | |
# Noise is not used for one-step sampling. | |
if len(self.timesteps) > 1: | |
noise = torch.randn(model_output.shape).to(model_output.device) | |
prev_sample = ( | |
alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise | |
) | |
else: | |
prev_sample = denoised | |
if not return_dict: | |
return (prev_sample, denoised) | |
return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised) | |
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise | |
def add_noise( | |
self, | |
original_samples: torch.FloatTensor, | |
noise: torch.FloatTensor, | |
timesteps: torch.IntTensor, | |
) -> torch.FloatTensor: | |
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples | |
alphas_cumprod = self.alphas_cumprod.to( | |
device=original_samples.device, dtype=original_samples.dtype | |
) | |
timesteps = timesteps.to(original_samples.device) | |
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 | |
sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
while len(sqrt_alpha_prod.shape) < len(original_samples.shape): | |
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | |
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | |
noisy_samples = ( | |
sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise | |
) | |
return noisy_samples | |
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity | |
def get_velocity( | |
self, | |
sample: torch.FloatTensor, | |
noise: torch.FloatTensor, | |
timesteps: torch.IntTensor, | |
) -> torch.FloatTensor: | |
# Make sure alphas_cumprod and timestep have same device and dtype as sample | |
alphas_cumprod = self.alphas_cumprod.to( | |
device=sample.device, dtype=sample.dtype | |
) | |
timesteps = timesteps.to(sample.device) | |
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 | |
sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
while len(sqrt_alpha_prod.shape) < len(sample.shape): | |
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | |
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | |
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample | |
return velocity | |
def __len__(self): | |
return self.config.num_train_timesteps | |