Spaces:
Running
on
A100
Running
on
A100
more instructions
Browse files
README.md
CHANGED
@@ -19,41 +19,61 @@ You need a webcam to run this demo. 🤗
|
|
19 |
You need CUDA and Python 3.10, Mac with an M1/M2/M3 chip or Intel Arc GPU
|
20 |
|
21 |
`TIMEOUT`: limit user session timeout
|
22 |
-
`SAFETY_CHECKER`: disabled if you want NSFW filter off
|
23 |
`MAX_QUEUE_SIZE`: limit number of users on current app instance
|
24 |
-
`TORCH_COMPILE`: enable if you want to use torch compile for faster inference
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
```bash
|
29 |
python -m venv venv
|
30 |
source venv/bin/activate
|
31 |
pip3 install -r requirements.txt
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload
|
33 |
```
|
34 |
|
35 |
-
###
|
36 |
|
37 |
Based pipeline from [taabata](https://github.com/taabata/LCM_Inpaint_Outpaint_Comfy)
|
38 |
|
39 |
```bash
|
40 |
-
python -m venv venv
|
41 |
-
source venv/bin/activate
|
42 |
-
pip3 install -r requirements.txt
|
43 |
uvicorn "app-controlnet:app" --host 0.0.0.0 --port 7860 --reload
|
44 |
```
|
45 |
|
46 |
-
|
47 |
-
### text to image
|
48 |
|
49 |
```bash
|
50 |
-
python -m venv venv
|
51 |
-
source venv/bin/activate
|
52 |
-
pip3 install -r requirements.txt
|
53 |
uvicorn "app-txt2img:app" --host 0.0.0.0 --port 7860 --reload
|
54 |
```
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
```bash
|
59 |
TIMEOUT=120 SAFETY_CHECKER=True MAX_QUEUE_SIZE=4 uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload
|
|
|
19 |
You need CUDA and Python 3.10, Mac with an M1/M2/M3 chip or Intel Arc GPU
|
20 |
|
21 |
`TIMEOUT`: limit user session timeout
|
22 |
+
`SAFETY_CHECKER`: disabled if you want NSFW filter off
|
23 |
`MAX_QUEUE_SIZE`: limit number of users on current app instance
|
24 |
+
`TORCH_COMPILE`: enable if you want to use torch compile for faster inference works well on A100 GPUs
|
25 |
|
26 |
+
|
27 |
+
## Install
|
28 |
|
29 |
```bash
|
30 |
python -m venv venv
|
31 |
source venv/bin/activate
|
32 |
pip3 install -r requirements.txt
|
33 |
+
```
|
34 |
+
|
35 |
+
# LCM
|
36 |
+
### Image to Image
|
37 |
+
|
38 |
+
```bash
|
39 |
uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload
|
40 |
```
|
41 |
|
42 |
+
### Image to Image ControlNet Canny
|
43 |
|
44 |
Based pipeline from [taabata](https://github.com/taabata/LCM_Inpaint_Outpaint_Comfy)
|
45 |
|
46 |
```bash
|
|
|
|
|
|
|
47 |
uvicorn "app-controlnet:app" --host 0.0.0.0 --port 7860 --reload
|
48 |
```
|
49 |
|
50 |
+
### Text to Image
|
|
|
51 |
|
52 |
```bash
|
|
|
|
|
|
|
53 |
uvicorn "app-txt2img:app" --host 0.0.0.0 --port 7860 --reload
|
54 |
```
|
55 |
|
56 |
+
# LCM + LoRa
|
57 |
+
|
58 |
+
Using LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more here](https://huggingface.co/blog/lcm_lora) or [technical report](https://huggingface.co/papers/2311.05556)
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
### Image to Image ControlNet Canny LoRa
|
63 |
+
|
64 |
+
|
65 |
+
```bash
|
66 |
+
uvicorn "app-controlnetlora:app" --host 0.0.0.0 --port 7860 --reload
|
67 |
+
```
|
68 |
+
|
69 |
+
### Text to Image
|
70 |
+
|
71 |
+
```bash
|
72 |
+
uvicorn "app-txt2imglora:app" --host 0.0.0.0 --port 7860 --reload
|
73 |
+
```
|
74 |
+
|
75 |
+
|
76 |
+
### Setting environment variables
|
77 |
|
78 |
```bash
|
79 |
TIMEOUT=120 SAFETY_CHECKER=True MAX_QUEUE_SIZE=4 uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload
|