Spaces:
Running
on
A100
Running
on
A100
make it work with OSX Mac m1/m2/m3
Browse files- README.md +14 -10
- app-img2img.py +38 -15
- app-txt2img.py +30 -7
README.md
CHANGED
@@ -17,37 +17,42 @@ You need a webcam to run this demo. 🤗
|
|
17 |
|
18 |
You need CUDA and Python
|
19 |
`TIMEOUT`: limit user session timeout
|
20 |
-
`SAFETY_CHECKER`:
|
21 |
`MAX_QUEUE_SIZE`: limit number of users on current app instance
|
22 |
|
23 |
### image to image
|
|
|
24 |
```bash
|
25 |
-
python -m venv venv
|
26 |
-
source venv/bin/activate
|
27 |
-
|
28 |
uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload
|
29 |
```
|
30 |
|
31 |
### text to image
|
32 |
|
33 |
```bash
|
34 |
-
python -m venv venv
|
35 |
-
source venv/bin/activate
|
36 |
-
|
37 |
uvicorn "app-txt2img:app" --host 0.0.0.0 --port 7860 --reload
|
38 |
```
|
|
|
39 |
or with environment variables
|
|
|
40 |
```bash
|
41 |
TIMEOUT=120 SAFETY_CHECKER=True MAX_QUEUE_SIZE=4 uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload
|
42 |
```
|
43 |
|
44 |
-
If you're running locally and want to test it on Mobile Safari, the webserver needs to be served over HTTPS.
|
45 |
|
46 |
```bash
|
47 |
openssl req -newkey rsa:4096 -nodes -keyout key.pem -x509 -days 365 -out certificate.pem
|
48 |
uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload --log-level info --ssl-certfile=certificate.pem --ssl-keyfile=key.pem
|
49 |
```
|
|
|
50 |
## Docker
|
|
|
51 |
You need NVIDIA Container Toolkit for Docker
|
52 |
|
53 |
```bash
|
@@ -62,8 +67,7 @@ docker run -ti -e TIMEOUT=0 -e SAFETY_CHECKER=False -p 7860:7860 --gpus all lcm-
|
|
62 |
```
|
63 |
|
64 |
# Demo on Hugging Face
|
65 |
-
https://huggingface.co/spaces/radames/Real-Time-Latent-Consistency-Model
|
66 |
|
|
|
67 |
|
68 |
https://github.com/radames/Real-Time-Latent-Consistency-Model/assets/102277/c4003ac5-e7ff-44c0-97d3-464bb659de70
|
69 |
-
|
|
|
17 |
|
18 |
You need CUDA and Python
|
19 |
`TIMEOUT`: limit user session timeout
|
20 |
+
`SAFETY_CHECKER`: disabled if you want NSFW filter off
|
21 |
`MAX_QUEUE_SIZE`: limit number of users on current app instance
|
22 |
|
23 |
### image to image
|
24 |
+
|
25 |
```bash
|
26 |
+
python -m venv venv
|
27 |
+
source venv/bin/activate
|
28 |
+
pip3 install -r requirements.txt
|
29 |
uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload
|
30 |
```
|
31 |
|
32 |
### text to image
|
33 |
|
34 |
```bash
|
35 |
+
python -m venv venv
|
36 |
+
source venv/bin/activate
|
37 |
+
pip3 install -r requirements.txt
|
38 |
uvicorn "app-txt2img:app" --host 0.0.0.0 --port 7860 --reload
|
39 |
```
|
40 |
+
|
41 |
or with environment variables
|
42 |
+
|
43 |
```bash
|
44 |
TIMEOUT=120 SAFETY_CHECKER=True MAX_QUEUE_SIZE=4 uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload
|
45 |
```
|
46 |
|
47 |
+
If you're running locally and want to test it on Mobile Safari, the webserver needs to be served over HTTPS.
|
48 |
|
49 |
```bash
|
50 |
openssl req -newkey rsa:4096 -nodes -keyout key.pem -x509 -days 365 -out certificate.pem
|
51 |
uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload --log-level info --ssl-certfile=certificate.pem --ssl-keyfile=key.pem
|
52 |
```
|
53 |
+
|
54 |
## Docker
|
55 |
+
|
56 |
You need NVIDIA Container Toolkit for Docker
|
57 |
|
58 |
```bash
|
|
|
67 |
```
|
68 |
|
69 |
# Demo on Hugging Face
|
|
|
70 |
|
71 |
+
https://huggingface.co/spaces/radames/Real-Time-Latent-Consistency-Model
|
72 |
|
73 |
https://github.com/radames/Real-Time-Latent-Consistency-Model/assets/102277/c4003ac5-e7ff-44c0-97d3-464bb659de70
|
|
app-img2img.py
CHANGED
@@ -19,6 +19,8 @@ import io
|
|
19 |
import uuid
|
20 |
import os
|
21 |
import time
|
|
|
|
|
22 |
|
23 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
24 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
@@ -28,6 +30,17 @@ print(f"TIMEOUT: {TIMEOUT}")
|
|
28 |
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
|
29 |
print(f"MAX_QUEUE_SIZE: {MAX_QUEUE_SIZE}")
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
if SAFETY_CHECKER == "True":
|
32 |
pipe = DiffusionPipeline.from_pretrained(
|
33 |
"SimianLuo/LCM_Dreamshaper_v7",
|
@@ -41,19 +54,28 @@ else:
|
|
41 |
custom_pipeline="latent_consistency_img2img.py",
|
42 |
custom_revision="main",
|
43 |
)
|
44 |
-
#TODO try to use tiny VAE
|
45 |
# pipe.vae = AutoencoderTiny.from_pretrained(
|
46 |
# "madebyollin/taesd", torch_dtype=torch.float16, use_safetensors=True
|
47 |
# )
|
48 |
pipe.set_progress_bar_config(disable=True)
|
49 |
-
pipe.to(torch_device=
|
50 |
pipe.unet.to(memory_format=torch.channels_last)
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
user_queue_map = {}
|
54 |
|
55 |
-
# for torch.compile
|
56 |
-
pipe(prompt="warmup", image=[Image.new("RGB", (512, 512))])
|
57 |
|
58 |
def predict(input_image, prompt, guidance_scale=8.0, strength=0.5, seed=2159232):
|
59 |
generator = torch.manual_seed(seed)
|
@@ -112,9 +134,7 @@ async def websocket_endpoint(websocket: WebSocket):
|
|
112 |
await websocket.send_json(
|
113 |
{"status": "success", "message": "Connected", "userId": uid}
|
114 |
)
|
115 |
-
user_queue_map[uid] = {
|
116 |
-
"queue": asyncio.Queue()
|
117 |
-
}
|
118 |
await websocket.send_json(
|
119 |
{"status": "start", "message": "Start Streaming", "userId": uid}
|
120 |
)
|
@@ -155,7 +175,13 @@ async def stream(user_id: uuid.UUID):
|
|
155 |
if input_image is None:
|
156 |
continue
|
157 |
|
158 |
-
image = predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
if image is None:
|
160 |
continue
|
161 |
frame_data = io.BytesIO()
|
@@ -194,10 +220,7 @@ async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
|
|
194 |
queue.get_nowait()
|
195 |
except asyncio.QueueEmpty:
|
196 |
continue
|
197 |
-
await queue.put({
|
198 |
-
"image": pil_image,
|
199 |
-
"params": params
|
200 |
-
})
|
201 |
if TIMEOUT > 0 and time.time() - last_time > TIMEOUT:
|
202 |
await websocket.send_json(
|
203 |
{
|
@@ -214,4 +237,4 @@ async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
|
|
214 |
traceback.print_exc()
|
215 |
|
216 |
|
217 |
-
app.mount("/", StaticFiles(directory="img2img", html=True), name="public")
|
|
|
19 |
import uuid
|
20 |
import os
|
21 |
import time
|
22 |
+
import psutil
|
23 |
+
|
24 |
|
25 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
26 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
|
|
30 |
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
|
31 |
print(f"MAX_QUEUE_SIZE: {MAX_QUEUE_SIZE}")
|
32 |
|
33 |
+
# check if MPS is available OSX only M1/M2/M3 chips
|
34 |
+
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
35 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
+
torch_device = device
|
37 |
+
torch_dtype = torch.float16
|
38 |
+
|
39 |
+
if mps_available:
|
40 |
+
device = torch.device("mps")
|
41 |
+
torch_device = "cpu"
|
42 |
+
torch_dtype = torch.float32
|
43 |
+
|
44 |
if SAFETY_CHECKER == "True":
|
45 |
pipe = DiffusionPipeline.from_pretrained(
|
46 |
"SimianLuo/LCM_Dreamshaper_v7",
|
|
|
54 |
custom_pipeline="latent_consistency_img2img.py",
|
55 |
custom_revision="main",
|
56 |
)
|
57 |
+
# TODO try to use tiny VAE
|
58 |
# pipe.vae = AutoencoderTiny.from_pretrained(
|
59 |
# "madebyollin/taesd", torch_dtype=torch.float16, use_safetensors=True
|
60 |
# )
|
61 |
pipe.set_progress_bar_config(disable=True)
|
62 |
+
pipe.to(torch_device=torch_device, torch_dtype=torch_dtype).to(device)
|
63 |
pipe.unet.to(memory_format=torch.channels_last)
|
64 |
+
|
65 |
+
if psutil.virtual_memory().total < 64 * 1024**3:
|
66 |
+
pipe.enable_attention_slicing()
|
67 |
+
|
68 |
+
if not mps_available:
|
69 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
70 |
+
pipe(prompt="warmup", image=[Image.new("RGB", (512, 512))])
|
71 |
+
|
72 |
+
compel_proc = Compel(
|
73 |
+
tokenizer=pipe.tokenizer,
|
74 |
+
text_encoder=pipe.text_encoder,
|
75 |
+
truncate_long_prompts=False,
|
76 |
+
)
|
77 |
user_queue_map = {}
|
78 |
|
|
|
|
|
79 |
|
80 |
def predict(input_image, prompt, guidance_scale=8.0, strength=0.5, seed=2159232):
|
81 |
generator = torch.manual_seed(seed)
|
|
|
134 |
await websocket.send_json(
|
135 |
{"status": "success", "message": "Connected", "userId": uid}
|
136 |
)
|
137 |
+
user_queue_map[uid] = {"queue": asyncio.Queue()}
|
|
|
|
|
138 |
await websocket.send_json(
|
139 |
{"status": "start", "message": "Start Streaming", "userId": uid}
|
140 |
)
|
|
|
175 |
if input_image is None:
|
176 |
continue
|
177 |
|
178 |
+
image = predict(
|
179 |
+
input_image,
|
180 |
+
params.prompt,
|
181 |
+
params.guidance_scale,
|
182 |
+
params.strength,
|
183 |
+
params.seed,
|
184 |
+
)
|
185 |
if image is None:
|
186 |
continue
|
187 |
frame_data = io.BytesIO()
|
|
|
220 |
queue.get_nowait()
|
221 |
except asyncio.QueueEmpty:
|
222 |
continue
|
223 |
+
await queue.put({"image": pil_image, "params": params})
|
|
|
|
|
|
|
224 |
if TIMEOUT > 0 and time.time() - last_time > TIMEOUT:
|
225 |
await websocket.send_json(
|
226 |
{
|
|
|
237 |
traceback.print_exc()
|
238 |
|
239 |
|
240 |
+
app.mount("/", StaticFiles(directory="img2img", html=True), name="public")
|
app-txt2img.py
CHANGED
@@ -19,6 +19,8 @@ import io
|
|
19 |
import uuid
|
20 |
import os
|
21 |
import time
|
|
|
|
|
22 |
|
23 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
24 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
@@ -28,6 +30,17 @@ print(f"TIMEOUT: {TIMEOUT}")
|
|
28 |
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
|
29 |
print(f"MAX_QUEUE_SIZE: {MAX_QUEUE_SIZE}")
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
if SAFETY_CHECKER == "True":
|
32 |
pipe = DiffusionPipeline.from_pretrained(
|
33 |
"SimianLuo/LCM_Dreamshaper_v7",
|
@@ -42,17 +55,27 @@ else:
|
|
42 |
custom_revision="main",
|
43 |
)
|
44 |
pipe.vae = AutoencoderTiny.from_pretrained(
|
45 |
-
"madebyollin/taesd", torch_dtype=
|
46 |
)
|
47 |
pipe.set_progress_bar_config(disable=True)
|
48 |
-
pipe.to(torch_device=
|
49 |
pipe.unet.to(memory_format=torch.channels_last)
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
user_queue_map = {}
|
53 |
|
54 |
-
# warmup trigger compilation
|
55 |
-
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
56 |
|
57 |
def predict(prompt, guidance_scale=8.0, seed=2159232):
|
58 |
generator = torch.manual_seed(seed)
|
@@ -148,7 +171,7 @@ async def stream(user_id: uuid.UUID):
|
|
148 |
params = await queue.get()
|
149 |
if params is None:
|
150 |
continue
|
151 |
-
|
152 |
image = predict(params.prompt, params.guidance_scale, params.seed)
|
153 |
if image is None:
|
154 |
continue
|
|
|
19 |
import uuid
|
20 |
import os
|
21 |
import time
|
22 |
+
import psutil
|
23 |
+
|
24 |
|
25 |
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
26 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
|
|
30 |
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
|
31 |
print(f"MAX_QUEUE_SIZE: {MAX_QUEUE_SIZE}")
|
32 |
|
33 |
+
# check if MPS is available OSX only M1/M2/M3 chips
|
34 |
+
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
35 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
+
torch_device = device
|
37 |
+
torch_dtype = torch.float16
|
38 |
+
|
39 |
+
if mps_available:
|
40 |
+
device = torch.device("mps")
|
41 |
+
torch_device = "cpu"
|
42 |
+
torch_dtype = torch.float32
|
43 |
+
|
44 |
if SAFETY_CHECKER == "True":
|
45 |
pipe = DiffusionPipeline.from_pretrained(
|
46 |
"SimianLuo/LCM_Dreamshaper_v7",
|
|
|
55 |
custom_revision="main",
|
56 |
)
|
57 |
pipe.vae = AutoencoderTiny.from_pretrained(
|
58 |
+
"madebyollin/taesd", torch_dtype=torch_dtype, use_safetensors=True
|
59 |
)
|
60 |
pipe.set_progress_bar_config(disable=True)
|
61 |
+
pipe.to(torch_device=torch_device, torch_dtype=torch_dtype).to(device)
|
62 |
pipe.unet.to(memory_format=torch.channels_last)
|
63 |
+
|
64 |
+
# check if computer has less than 64GB of RAM using sys or os
|
65 |
+
if psutil.virtual_memory().total < 64 * 1024**3:
|
66 |
+
pipe.enable_attention_slicing()
|
67 |
+
|
68 |
+
if not mps_available:
|
69 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
70 |
+
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
71 |
+
|
72 |
+
compel_proc = Compel(
|
73 |
+
tokenizer=pipe.tokenizer,
|
74 |
+
text_encoder=pipe.text_encoder,
|
75 |
+
truncate_long_prompts=False,
|
76 |
+
)
|
77 |
user_queue_map = {}
|
78 |
|
|
|
|
|
79 |
|
80 |
def predict(prompt, guidance_scale=8.0, seed=2159232):
|
81 |
generator = torch.manual_seed(seed)
|
|
|
171 |
params = await queue.get()
|
172 |
if params is None:
|
173 |
continue
|
174 |
+
|
175 |
image = predict(params.prompt, params.guidance_scale, params.seed)
|
176 |
if image is None:
|
177 |
continue
|