Spaces:
Running
on
A10G
Running
on
A10G
first
Browse files- .gitignore +2 -0
- app.py +254 -0
- requirements.txt +8 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
venv
|
2 |
+
gradio_cached_examples
|
app.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import PIL.Image
|
6 |
+
import torch
|
7 |
+
from typing import List
|
8 |
+
from diffusers.utils import numpy_to_pil
|
9 |
+
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
10 |
+
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
|
11 |
+
from fastapi import FastAPI
|
12 |
+
import uvicorn
|
13 |
+
from pydantic import BaseModel
|
14 |
+
from fastapi.middleware.cors import CORSMiddleware
|
15 |
+
from fastapi.responses import RedirectResponse
|
16 |
+
|
17 |
+
|
18 |
+
class GenerateRequest(BaseModel):
|
19 |
+
prompt: str
|
20 |
+
negative_prompt: str = ""
|
21 |
+
seed: int = 0
|
22 |
+
|
23 |
+
|
24 |
+
app = FastAPI()
|
25 |
+
origins = [
|
26 |
+
"http://localhost.tiangolo.com",
|
27 |
+
"https://localhost.tiangolo.com",
|
28 |
+
"http://localhost",
|
29 |
+
"http://localhost:8080",
|
30 |
+
]
|
31 |
+
|
32 |
+
app.add_middleware(
|
33 |
+
CORSMiddleware,
|
34 |
+
allow_origins=origins,
|
35 |
+
allow_credentials=True,
|
36 |
+
allow_methods=["*"],
|
37 |
+
allow_headers=["*"],
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
@app.get("/")
|
42 |
+
async def main():
|
43 |
+
# redirect to https://huggingface.co/spaces/multimodalart/stable-cascade
|
44 |
+
return RedirectResponse("https://huggingface.co/spaces/multimodalart/stable-cascade")
|
45 |
+
|
46 |
+
|
47 |
+
if __name__ == "__main__":
|
48 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
49 |
+
|
50 |
+
# MAX_SEED = np.iinfo(np.int32).max
|
51 |
+
# USE_TORCH_COMPILE = False
|
52 |
+
|
53 |
+
# dtype = torch.bfloat16
|
54 |
+
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
55 |
+
# if torch.cuda.is_available():
|
56 |
+
# prior_pipeline = StableCascadePriorPipeline.from_pretrained(
|
57 |
+
# "stabilityai/stable-cascade-prior", torch_dtype=dtype) # .to(device)
|
58 |
+
# decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained(
|
59 |
+
# "stabilityai/stable-cascade", torch_dtype=dtype) # .to(device)
|
60 |
+
# prior_pipeline.to(device)
|
61 |
+
# decoder_pipeline.to(device)
|
62 |
+
|
63 |
+
# if USE_TORCH_COMPILE:
|
64 |
+
# prior_pipeline.prior = torch.compile(
|
65 |
+
# prior_pipeline.prior, mode="reduce-overhead", fullgraph=True)
|
66 |
+
# decoder_pipeline.decoder = torch.compile(
|
67 |
+
# decoder_pipeline.decoder, mode="max-autotune", fullgraph=True)
|
68 |
+
|
69 |
+
|
70 |
+
# else:
|
71 |
+
# prior_pipeline = None
|
72 |
+
# decoder_pipeline = None
|
73 |
+
|
74 |
+
|
75 |
+
# def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
76 |
+
# if randomize_seed:
|
77 |
+
# seed = random.randint(0, MAX_SEED)
|
78 |
+
# return seed
|
79 |
+
|
80 |
+
|
81 |
+
# def generate(
|
82 |
+
# prompt: str,
|
83 |
+
# negative_prompt: str = "",
|
84 |
+
# seed: int = 0,
|
85 |
+
# width: int = 1024,
|
86 |
+
# height: int = 1024,
|
87 |
+
# prior_num_inference_steps: int = 30,
|
88 |
+
# # prior_timesteps: List[float] = None,
|
89 |
+
# prior_guidance_scale: float = 4.0,
|
90 |
+
# decoder_num_inference_steps: int = 12,
|
91 |
+
# # decoder_timesteps: List[float] = None,
|
92 |
+
# decoder_guidance_scale: float = 0.0,
|
93 |
+
# num_images_per_prompt: int = 2,
|
94 |
+
# progress=gr.Progress(track_tqdm=True),
|
95 |
+
# ) -> PIL.Image.Image:
|
96 |
+
|
97 |
+
# generator = torch.Generator().manual_seed(seed)
|
98 |
+
# prior_output = prior_pipeline(
|
99 |
+
# prompt=prompt,
|
100 |
+
# height=height,
|
101 |
+
# width=width,
|
102 |
+
# num_inference_steps=prior_num_inference_steps,
|
103 |
+
# timesteps=DEFAULT_STAGE_C_TIMESTEPS,
|
104 |
+
# negative_prompt=negative_prompt,
|
105 |
+
# guidance_scale=prior_guidance_scale,
|
106 |
+
# num_images_per_prompt=num_images_per_prompt,
|
107 |
+
# generator=generator,
|
108 |
+
# )
|
109 |
+
# decoder_output = decoder_pipeline(
|
110 |
+
# image_embeddings=prior_output.image_embeddings,
|
111 |
+
# prompt=prompt,
|
112 |
+
# num_inference_steps=decoder_num_inference_steps,
|
113 |
+
# # timesteps=decoder_timesteps,
|
114 |
+
# guidance_scale=decoder_guidance_scale,
|
115 |
+
# negative_prompt=negative_prompt,
|
116 |
+
# generator=generator,
|
117 |
+
# output_type="pil",
|
118 |
+
# ).images
|
119 |
+
|
120 |
+
# return decoder_output[0]
|
121 |
+
|
122 |
+
|
123 |
+
# examples = [
|
124 |
+
# "An astronaut riding a green horse",
|
125 |
+
# "A mecha robot in a favela by Tarsila do Amaral",
|
126 |
+
# "The sprirt of a Tamagotchi wandering in the city of Los Angeles",
|
127 |
+
# "A delicious feijoada ramen dish"
|
128 |
+
# ]
|
129 |
+
|
130 |
+
# with gr.Blocks() as demo:
|
131 |
+
# gr.Markdown(DESCRIPTION)
|
132 |
+
# gr.DuplicateButton(
|
133 |
+
# value="Duplicate Space for private use",
|
134 |
+
# elem_id="duplicate-button",
|
135 |
+
# visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
136 |
+
# )
|
137 |
+
# with gr.Group():
|
138 |
+
# with gr.Row():
|
139 |
+
# prompt = gr.Text(
|
140 |
+
# label="Prompt",
|
141 |
+
# show_label=False,
|
142 |
+
# max_lines=1,
|
143 |
+
# placeholder="Enter your prompt",
|
144 |
+
# container=False,
|
145 |
+
# )
|
146 |
+
# run_button = gr.Button("Run", scale=0)
|
147 |
+
# result = gr.Image(label="Result", show_label=False)
|
148 |
+
# with gr.Accordion("Advanced options", open=False):
|
149 |
+
# negative_prompt = gr.Text(
|
150 |
+
# label="Negative prompt",
|
151 |
+
# max_lines=1,
|
152 |
+
# placeholder="Enter a Negative Prompt",
|
153 |
+
# )
|
154 |
+
|
155 |
+
# seed = gr.Slider(
|
156 |
+
# label="Seed",
|
157 |
+
# minimum=0,
|
158 |
+
# maximum=MAX_SEED,
|
159 |
+
# step=1,
|
160 |
+
# value=0,
|
161 |
+
# )
|
162 |
+
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
163 |
+
# with gr.Row():
|
164 |
+
# width = gr.Slider(
|
165 |
+
# label="Width",
|
166 |
+
# minimum=1024,
|
167 |
+
# maximum=1536,
|
168 |
+
# step=512,
|
169 |
+
# value=1024,
|
170 |
+
# )
|
171 |
+
# height = gr.Slider(
|
172 |
+
# label="Height",
|
173 |
+
# minimum=1024,
|
174 |
+
# maximum=1536,
|
175 |
+
# step=512,
|
176 |
+
# value=1024,
|
177 |
+
# )
|
178 |
+
# num_images_per_prompt = gr.Slider(
|
179 |
+
# label="Number of Images",
|
180 |
+
# minimum=1,
|
181 |
+
# maximum=2,
|
182 |
+
# step=1,
|
183 |
+
# value=1,
|
184 |
+
# )
|
185 |
+
# with gr.Row():
|
186 |
+
# prior_guidance_scale = gr.Slider(
|
187 |
+
# label="Prior Guidance Scale",
|
188 |
+
# minimum=0,
|
189 |
+
# maximum=20,
|
190 |
+
# step=0.1,
|
191 |
+
# value=4.0,
|
192 |
+
# )
|
193 |
+
# prior_num_inference_steps = gr.Slider(
|
194 |
+
# label="Prior Inference Steps",
|
195 |
+
# minimum=10,
|
196 |
+
# maximum=30,
|
197 |
+
# step=1,
|
198 |
+
# value=20,
|
199 |
+
# )
|
200 |
+
|
201 |
+
# decoder_guidance_scale = gr.Slider(
|
202 |
+
# label="Decoder Guidance Scale",
|
203 |
+
# minimum=0,
|
204 |
+
# maximum=0,
|
205 |
+
# step=0.1,
|
206 |
+
# value=0.0,
|
207 |
+
# )
|
208 |
+
# decoder_num_inference_steps = gr.Slider(
|
209 |
+
# label="Decoder Inference Steps",
|
210 |
+
# minimum=4,
|
211 |
+
# maximum=12,
|
212 |
+
# step=1,
|
213 |
+
# value=10,
|
214 |
+
# )
|
215 |
+
|
216 |
+
# gr.Examples(
|
217 |
+
# examples=examples,
|
218 |
+
# inputs=prompt,
|
219 |
+
# outputs=result,
|
220 |
+
# fn=generate,
|
221 |
+
# cache_examples=False,
|
222 |
+
# )
|
223 |
+
|
224 |
+
# inputs = [
|
225 |
+
# prompt,
|
226 |
+
# negative_prompt,
|
227 |
+
# seed,
|
228 |
+
# width,
|
229 |
+
# height,
|
230 |
+
# prior_num_inference_steps,
|
231 |
+
# # prior_timesteps,
|
232 |
+
# prior_guidance_scale,
|
233 |
+
# decoder_num_inference_steps,
|
234 |
+
# # decoder_timesteps,
|
235 |
+
# decoder_guidance_scale,
|
236 |
+
# num_images_per_prompt,
|
237 |
+
# ]
|
238 |
+
# gr.on(
|
239 |
+
# triggers=[prompt.submit, negative_prompt.submit, run_button.click],
|
240 |
+
# fn=randomize_seed_fn,
|
241 |
+
# inputs=[seed, randomize_seed],
|
242 |
+
# outputs=seed,
|
243 |
+
# queue=False,
|
244 |
+
# api_name=False,
|
245 |
+
# ).then(
|
246 |
+
# fn=generate,
|
247 |
+
# inputs=inputs,
|
248 |
+
# outputs=result,
|
249 |
+
# api_name="run",
|
250 |
+
# )
|
251 |
+
|
252 |
+
|
253 |
+
# if __name__ == "__main__":
|
254 |
+
# demo.queue(max_size=20).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/kashif/diffusers.git@wuerstchen-v3
|
2 |
+
accelerate
|
3 |
+
safetensors
|
4 |
+
transformers
|
5 |
+
gradio
|
6 |
+
fastapi
|
7 |
+
pydantic
|
8 |
+
uvicorn
|