File size: 6,702 Bytes
e3ce2d3
 
 
 
 
 
 
11e5217
e3ce2d3
 
 
fb49ce5
e3ce2d3
 
 
11e5217
 
 
 
 
e3ce2d3
11e5217
 
e3ce2d3
 
 
 
 
 
 
 
 
 
 
 
 
11e5217
 
 
 
 
 
 
 
 
 
 
e3ce2d3
 
 
dcacd5b
e3ce2d3
e681f63
e3ce2d3
 
 
 
 
fe73477
 
 
e3ce2d3
 
 
 
fe73477
e681f63
e3ce2d3
 
 
 
 
11e5217
e3ce2d3
 
11e5217
 
 
 
 
 
e3ce2d3
2265388
 
11e5217
 
 
e3ce2d3
 
 
a85d67f
11e5217
 
e3ce2d3
c1c4d63
e3ce2d3
f5b46d6
c1c4d63
e3ce2d3
11e5217
 
 
 
 
e3ce2d3
11e5217
 
 
 
 
e3ce2d3
 
 
 
 
 
 
 
 
 
 
11e5217
 
 
 
 
 
 
e3ce2d3
 
11e5217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ce2d3
 
 
 
 
11e5217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ce2d3
11e5217
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import gradio as gr
import torch
from PIL import Image
import numpy as np
from diffusers import StableDiffusionDepth2ImgPipeline
from pathlib import Path

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dept2img = StableDiffusionDepth2ImgPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-depth",
    torch_dtype=torch.float16,
).to(device)


def pad_image(input_image):
    pad_w, pad_h = (
        np.max(((2, 2), np.ceil(np.array(input_image.size) / 64).astype(int)), axis=0)
        * 64
        - input_image.size
    )
    im_padded = Image.fromarray(
        np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode="edge")
    )
    w, h = im_padded.size
    if w == h:
        return im_padded
    elif w > h:
        new_image = Image.new(im_padded.mode, (w, w), (0, 0, 0))
        new_image.paste(im_padded, (0, (w - h) // 2))
        return new_image
    else:
        new_image = Image.new(im_padded.mode, (h, h), (0, 0, 0))
        new_image.paste(im_padded, ((h - w) // 2, 0))
        return new_image


def predict(
    input_image,
    prompt,
    negative_prompt,
    steps,
    num_samples,
    scale,
    seed,
    strength,
    depth_image=None,
):
    depth = None
    if depth_image is not None:
        depth_image = pad_image(depth_image)
        depth_image = depth_image.resize((512, 512))
        depth = np.array(depth_image.convert("L"))
        depth = np.expand_dims(depth, 0)
        depth = depth.astype(np.float32) / 255.0
        depth = torch.from_numpy(depth)
    init_image = input_image.convert("RGB")
    image = pad_image(init_image)  # resize to integer multiple of 32
    image = image.resize((512, 512))
    generator = None
    if seed is not None:
        generator = torch.Generator(device=device).manual_seed(seed)
    result = dept2img(
        image=image,
        prompt=prompt,
        negative_prompt=negative_prompt,
        generator=generator,
        depth_map=depth,
        strength=strength,
        num_inference_steps=steps,
        guidance_scale=scale,
        num_images_per_prompt=num_samples,
    )
    return result["images"]


css = """
#gallery .fixed-height {
    max-height: unset;
}
"""
with gr.Blocks(css=css) as block:
    with gr.Row():
        with gr.Column():
            gr.Markdown("## Stable Diffusion 2 Depth2Img")
            gr.HTML(
                "<p><a href='https://huggingface.co/spaces/radames/stable-diffusion-depth2img?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>"
            )

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil")
            with gr.Accordion("Depth Image Optional", open=False):
                depth_image = gr.Image(type="pil")
            prompt = gr.Textbox(label="Prompt")
            negative_prompt = gr.Textbox(label="Negative Prompt")

            run_button = gr.Button("Run")
            with gr.Accordion("Advanced Options", open=False):
                num_samples = gr.Slider(
                    label="Images", minimum=1, maximum=4, value=1, step=1
                )
                steps = gr.Slider(
                    label="Steps", minimum=1, maximum=50, value=50, step=1
                )
                scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=0.1,
                    maximum=30.0,
                    value=9.0,
                    step=0.1,
                )
                strength = gr.Slider(
                    label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=2147483647,
                    step=1,
                    randomize=True,
                )
        with gr.Column(scale=2):
            with gr.Row():
                gallery = gr.Gallery(
                    label="Generated Images",
                    show_label=False,
                    elem_id="gallery",
                )
    gr.Examples(
        examples=[
            [
                "./examples/baby.jpg",
                "high definition photo of a baby astronaut space walking at the international space station with earth seeing from above in the background",
                "",
                50,
                4,
                9.0,
                123123123,
                0.8,
                None,
            ],
            [
                "./examples/gol.jpg",
                "professional photo of a Elmo jumping between two high rises, beautiful colorful city landscape in the background",
                "",
                50,
                4,
                9.0,
                1734133747,
                0.9,
                None,
            ],
            [
                "./examples/bag.jpg",
                "a photo of a bag of cookies in the bathroom",
                "low light, dark, blurry",
                50,
                4,
                9.0,
                1734133747,
                0.9,
                "./examples/depth.jpg",
            ],
            [
                "./examples/smile_face.jpg",
                "a hand holding a very spherical orange",
                "low light, dark, blurry",
                50,
                4,
                6.0,
                961736534,
                0.5,
                "./examples/smile_depth.jpg",
            ],
        ],
        inputs=[
            input_image,
            prompt,
            negative_prompt,
            steps,
            num_samples,
            scale,
            seed,
            strength,
            depth_image,
        ],
        outputs=[gallery],
        fn=predict,
        cache_examples=True,
    )
    run_button.click(
        fn=predict,
        inputs=[
            input_image,
            prompt,
            negative_prompt,
            steps,
            num_samples,
            scale,
            seed,
            strength,
            depth_image,
        ],
        outputs=[gallery],
    )

block.queue(api_open=False)
block.launch(show_api=False)