Spaces:
Runtime error
Runtime error
File size: 6,702 Bytes
e3ce2d3 11e5217 e3ce2d3 fb49ce5 e3ce2d3 11e5217 e3ce2d3 11e5217 e3ce2d3 11e5217 e3ce2d3 dcacd5b e3ce2d3 e681f63 e3ce2d3 fe73477 e3ce2d3 fe73477 e681f63 e3ce2d3 11e5217 e3ce2d3 11e5217 e3ce2d3 2265388 11e5217 e3ce2d3 a85d67f 11e5217 e3ce2d3 c1c4d63 e3ce2d3 f5b46d6 c1c4d63 e3ce2d3 11e5217 e3ce2d3 11e5217 e3ce2d3 11e5217 e3ce2d3 11e5217 e3ce2d3 11e5217 e3ce2d3 11e5217 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import gradio as gr
import torch
from PIL import Image
import numpy as np
from diffusers import StableDiffusionDepth2ImgPipeline
from pathlib import Path
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dept2img = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth",
torch_dtype=torch.float16,
).to(device)
def pad_image(input_image):
pad_w, pad_h = (
np.max(((2, 2), np.ceil(np.array(input_image.size) / 64).astype(int)), axis=0)
* 64
- input_image.size
)
im_padded = Image.fromarray(
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode="edge")
)
w, h = im_padded.size
if w == h:
return im_padded
elif w > h:
new_image = Image.new(im_padded.mode, (w, w), (0, 0, 0))
new_image.paste(im_padded, (0, (w - h) // 2))
return new_image
else:
new_image = Image.new(im_padded.mode, (h, h), (0, 0, 0))
new_image.paste(im_padded, ((h - w) // 2, 0))
return new_image
def predict(
input_image,
prompt,
negative_prompt,
steps,
num_samples,
scale,
seed,
strength,
depth_image=None,
):
depth = None
if depth_image is not None:
depth_image = pad_image(depth_image)
depth_image = depth_image.resize((512, 512))
depth = np.array(depth_image.convert("L"))
depth = np.expand_dims(depth, 0)
depth = depth.astype(np.float32) / 255.0
depth = torch.from_numpy(depth)
init_image = input_image.convert("RGB")
image = pad_image(init_image) # resize to integer multiple of 32
image = image.resize((512, 512))
generator = None
if seed is not None:
generator = torch.Generator(device=device).manual_seed(seed)
result = dept2img(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
generator=generator,
depth_map=depth,
strength=strength,
num_inference_steps=steps,
guidance_scale=scale,
num_images_per_prompt=num_samples,
)
return result["images"]
css = """
#gallery .fixed-height {
max-height: unset;
}
"""
with gr.Blocks(css=css) as block:
with gr.Row():
with gr.Column():
gr.Markdown("## Stable Diffusion 2 Depth2Img")
gr.HTML(
"<p><a href='https://huggingface.co/spaces/radames/stable-diffusion-depth2img?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>"
)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil")
with gr.Accordion("Depth Image Optional", open=False):
depth_image = gr.Image(type="pil")
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt")
run_button = gr.Button("Run")
with gr.Accordion("Advanced Options", open=False):
num_samples = gr.Slider(
label="Images", minimum=1, maximum=4, value=1, step=1
)
steps = gr.Slider(
label="Steps", minimum=1, maximum=50, value=50, step=1
)
scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=30.0,
value=9.0,
step=0.1,
)
strength = gr.Slider(
label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2147483647,
step=1,
randomize=True,
)
with gr.Column(scale=2):
with gr.Row():
gallery = gr.Gallery(
label="Generated Images",
show_label=False,
elem_id="gallery",
)
gr.Examples(
examples=[
[
"./examples/baby.jpg",
"high definition photo of a baby astronaut space walking at the international space station with earth seeing from above in the background",
"",
50,
4,
9.0,
123123123,
0.8,
None,
],
[
"./examples/gol.jpg",
"professional photo of a Elmo jumping between two high rises, beautiful colorful city landscape in the background",
"",
50,
4,
9.0,
1734133747,
0.9,
None,
],
[
"./examples/bag.jpg",
"a photo of a bag of cookies in the bathroom",
"low light, dark, blurry",
50,
4,
9.0,
1734133747,
0.9,
"./examples/depth.jpg",
],
[
"./examples/smile_face.jpg",
"a hand holding a very spherical orange",
"low light, dark, blurry",
50,
4,
6.0,
961736534,
0.5,
"./examples/smile_depth.jpg",
],
],
inputs=[
input_image,
prompt,
negative_prompt,
steps,
num_samples,
scale,
seed,
strength,
depth_image,
],
outputs=[gallery],
fn=predict,
cache_examples=True,
)
run_button.click(
fn=predict,
inputs=[
input_image,
prompt,
negative_prompt,
steps,
num_samples,
scale,
seed,
strength,
depth_image,
],
outputs=[gallery],
)
block.queue(api_open=False)
block.launch(show_api=False)
|