|
from langchain_openai import OpenAIEmbeddings |
|
from langchain_chroma import Chroma |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.docstore.document import Document |
|
import os |
|
|
|
from config import PERSIST_DIRECTORY |
|
|
|
def process_safety_with_chroma(text): |
|
""" |
|
Processes and stores the given text into ChromaDB. |
|
|
|
Args: |
|
text (str): Text to be embedded and stored. |
|
|
|
Returns: |
|
Chroma: The Chroma vector store object. |
|
""" |
|
if os.path.exists(PERSIST_DIRECTORY): |
|
vector_store = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=OpenAIEmbeddings()) |
|
else: |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100) |
|
text_chunks = text_splitter.split_text(text) |
|
documents = [Document(page_content=chunk, metadata={"source": f"chunk_{i}"}) for i, chunk in enumerate(text_chunks)] |
|
|
|
embeddings = OpenAIEmbeddings() |
|
vector_store = Chroma.from_documents(documents, embeddings, persist_directory=PERSIST_DIRECTORY) |
|
|
|
return vector_store |
|
|