rahul2001's picture
Update app.py
d654844
import gradio as gr
import random
import time
import torch
import bitsandbytes
import accelerate
import peft
# Use a pipeline as a high-level helper
# Use a pipeline as a high-level helper
from transformers import pipeline
from transformers import BitsAndBytesConfig
from transformers import AutoTokenizer,AutoModelForCausalLM
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained("llSourcell/medllama2_7b",quantization_config=nf4_config)
model = AutoModelForCausalLM.from_pretrained("llSourcell/medllama2_7b",quantization_config=nf4_config)
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.ClearButton([msg, chatbot])
def respond(message, chat_history):
inputs = tokenizer(message, return_tensors="pt")
generate_ids = model.generate(inputs.input_ids, max_length=30)
bot_message = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
chat_history.append((message, bot_message))
time.sleep(2)
return "", chat_history
msg.submit(respond, [msg, chatbot], [msg, chatbot])
demo.launch()