Spaces:
Runtime error
Runtime error
import gradio as gr | |
import random | |
import time | |
import torch | |
import bitsandbytes | |
import accelerate | |
import peft | |
# Use a pipeline as a high-level helper | |
# Use a pipeline as a high-level helper | |
from transformers import pipeline | |
from transformers import BitsAndBytesConfig | |
from transformers import AutoTokenizer,AutoModelForCausalLM | |
nf4_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
tokenizer = AutoTokenizer.from_pretrained("llSourcell/medllama2_7b",quantization_config=nf4_config) | |
model = AutoModelForCausalLM.from_pretrained("llSourcell/medllama2_7b",quantization_config=nf4_config) | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox() | |
clear = gr.ClearButton([msg, chatbot]) | |
def respond(message, chat_history): | |
inputs = tokenizer(message, return_tensors="pt") | |
generate_ids = model.generate(inputs.input_ids, max_length=30) | |
bot_message = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
chat_history.append((message, bot_message)) | |
time.sleep(2) | |
return "", chat_history | |
msg.submit(respond, [msg, chatbot], [msg, chatbot]) | |
demo.launch() |