|
"""iBleu metric.""" |
|
|
|
import datasets |
|
import sacrebleu as scb |
|
from packaging import version |
|
|
|
import evaluate |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{sun-zhou-2012-joint, |
|
title = "Joint Learning of a Dual {SMT} System for Paraphrase Generation", |
|
author = "Sun, Hong and |
|
Zhou, Ming", |
|
booktitle = "Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)", |
|
month = jul, |
|
year = "2012", |
|
address = "Jeju Island, Korea", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/P12-2008", |
|
pages = "38--42", |
|
} |
|
|
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
iBLEU measures the adequacy and dissimilarity of generated paraphrases. |
|
""" |
|
|
|
_KWARGS_DESCRIPTION = """ |
|
Produces iBLEU score from an input and a prediction against one or more references. |
|
Args: |
|
inputs (`list` of `str`): list of model inputs. Each input should be tokenized into a list of tokens. |
|
predictions (`list` of `str`): list of translations to score. Each translation should be tokenized into a list of tokens. |
|
references (`list` of `list` of `str`): A list of lists of references. The contents of the first sub-list are the references for the first prediction, the contents of the second sub-list are for the second prediction, etc. Note that there must be the same number of references for each prediction (i.e. all sub-lists must be of the same length). |
|
alpha (`float`): parameter for balancing between adequacy and dissimilarity; smaller α value indicates larger punishment on self-paraphrase. |
|
smooth_method (`str`): The smoothing method to use, defaults to `'exp'`. Possible values are: |
|
- `'none'`: no smoothing |
|
- `'floor'`: increment zero counts |
|
- `'add-k'`: increment num/denom by k for n>1 |
|
- `'exp'`: exponential decay |
|
smooth_value (`float`): The smoothing value. Only valid when `smooth_method='floor'` (in which case `smooth_value` defaults to `0.1`) or `smooth_method='add-k'` (in which case `smooth_value` defaults to `1`). |
|
tokenize (`str`): Tokenization method to use for iBLEU. If not provided, defaults to `'zh'` for Chinese, `'ja-mecab'` for Japanese and `'13a'` (mteval) otherwise. Possible values are: |
|
- `'none'`: No tokenization. |
|
- `'zh'`: Chinese tokenization. |
|
- `'13a'`: mimics the `mteval-v13a` script from Moses. |
|
- `'intl'`: International tokenization, mimics the `mteval-v14` script from Moses |
|
- `'char'`: Language-agnostic character-level tokenization. |
|
- `'ja-mecab'`: Japanese tokenization. Uses the [MeCab tokenizer](https://pypi.org/project/mecab-python3). |
|
lowercase (`bool`): If `True`, lowercases the input, enabling case-insensitivity. Defaults to `False`. |
|
force (`bool`): If `True`, insists that your tokenized input is actually detokenized. Defaults to `False`. |
|
use_effective_order (`bool`): If `True`, stops including n-gram orders for which precision is 0. This should be `True`, if sentence-level BLEU will be computed. Defaults to `False`. |
|
Returns: |
|
'score': iBLEU score, |
|
Example: |
|
>>> inputs = ["greetings general kenobi", "foo foo bar bar"] |
|
>>> predictions = ["hello there general kenobi", "foo bar foobar"] |
|
>>> references = [["hello there general kenobi", "hello there !"], ["foo bar foobar", "foo bar foobar"]] |
|
>>> ibleu = evaluate.load("rahular/ibleu") |
|
>>> results = ibleu.compute(inputs=inputs, predictions=predictions, references=references) |
|
>>> print(results) |
|
{'score': 60.41585343630594} |
|
""" |
|
|
|
|
|
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
class ibleu(evaluate.Metric): |
|
def _info(self): |
|
if version.parse(scb.__version__) < version.parse("1.4.12"): |
|
raise ImportWarning( |
|
"To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" |
|
'You can install it with `pip install "sacrebleu>=1.4.12"`.' |
|
) |
|
return evaluate.MetricInfo( |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
inputs_description=_KWARGS_DESCRIPTION, |
|
features=[ |
|
datasets.Features( |
|
{ |
|
"inputs": datasets.Value("string", id="sequence"), |
|
"predictions": datasets.Value("string", id="sequence"), |
|
"references": datasets.Sequence( |
|
datasets.Value("string", id="sequence"), id="references" |
|
), |
|
} |
|
), |
|
datasets.Features( |
|
{ |
|
"inputs": datasets.Value("string", id="sequence"), |
|
"predictions": datasets.Value("string", id="sequence"), |
|
"references": datasets.Value("string", id="sequence"), |
|
} |
|
), |
|
], |
|
reference_urls=[ |
|
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html" |
|
], |
|
) |
|
|
|
def _compute( |
|
self, |
|
inputs, |
|
predictions, |
|
references, |
|
alpha=0.7, |
|
smooth_method="exp", |
|
smooth_value=None, |
|
force=False, |
|
lowercase=False, |
|
tokenize=None, |
|
use_effective_order=False, |
|
): |
|
|
|
if isinstance(references[0], str): |
|
references = [[ref] for ref in references] |
|
|
|
if isinstance(inputs[0], str): |
|
inputs = [[inp] for inp in inputs] |
|
else: |
|
raise ValueError("There can be only one input string") |
|
|
|
references_per_prediction = len(references[0]) |
|
if any(len(refs) != references_per_prediction for refs in references): |
|
raise ValueError("Sacrebleu requires the same number of references for each prediction") |
|
transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)] |
|
|
|
tgt_bleu = scb.corpus_bleu( |
|
predictions, |
|
transformed_references, |
|
smooth_method=smooth_method, |
|
smooth_value=smooth_value, |
|
force=force, |
|
lowercase=lowercase, |
|
use_effective_order=use_effective_order, |
|
**(dict(tokenize=tokenize) if tokenize else {}), |
|
).score |
|
self_bleu = scb.corpus_bleu( |
|
predictions, |
|
inputs, |
|
smooth_method=smooth_method, |
|
smooth_value=smooth_value, |
|
force=force, |
|
lowercase=lowercase, |
|
use_effective_order=use_effective_order, |
|
**(dict(tokenize=tokenize) if tokenize else {}), |
|
).score |
|
output_dict = { |
|
"score": alpha * tgt_bleu - (1 - alpha) * self_bleu |
|
} |
|
return output_dict |