rajistics's picture
Duplicate from enoreyes/call-sentiment-demo
6152174
raw
history blame
3.78 kB
import os
import re
import functools
from functools import partial
import requests
import pandas as pd
import plotly.express as px
import torch
import gradio as gr
from transformers import pipeline, Wav2Vec2ProcessorWithLM
from pyannote.audio import Pipeline
import whisperx
from utils import split, create_fig
from utils import speech_to_text as stt
os.environ["TOKENIZERS_PARALLELISM"] = "false"
device = 0 if torch.cuda.is_available() else -1
# display if the sentiment value is above these thresholds
thresholds = {"joy": 0.99,"anger": 0.95,"surprise": 0.95,"sadness": 0.98,"fear": 0.95,"love": 0.99,}
color_map = {"joy": "green","anger": "red","surprise": "yellow","sadness": "blue","fear": "orange","love": "purple",}
# Audio components
whisper_device = "cuda" if torch.cuda.is_available() else "cpu"
whisper = whisperx.load_model("tiny.en", whisper_device)
alignment_model, metadata = whisperx.load_align_model(language_code="en", device=whisper_device)
speaker_segmentation = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1",
use_auth_token=os.environ['ENO_TOKEN'])
# Text components
emotion_pipeline = pipeline(
"text-classification",
model="bhadresh-savani/distilbert-base-uncased-emotion",
device=device,
)
summarization_pipeline = pipeline(
"summarization",
model="knkarthick/MEETING_SUMMARY",
device=device
)
EXAMPLES = [["Customer_Support_Call.wav"]]
speech_to_text = partial(
stt,
speaker_segmentation=speaker_segmentation,
whisper=whisper,
alignment_model=alignment_model,
metadata=metadata,
whisper_device=whisper_device
)
def summarize(diarized, summarization_pipeline):
text = ""
for d in diarized:
text += f"\n{d[1]}: {d[0]}"
return summarization_pipeline(text)[0]["summary_text"]
def sentiment(diarized, emotion_pipeline):
customer_sentiments = []
for i in range(0, len(diarized), 2):
speaker_speech, speaker_id = diarized[i]
sentences = split(speaker_speech)
if "Customer" in speaker_id:
outputs = emotion_pipeline(sentences)
for idx, (o, t) in enumerate(zip(outputs, sentences)):
if o["score"] > thresholds[o["label"]]:
customer_sentiments.append((t, o["label"]))
return customer_sentiments
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
audio = gr.Audio(label="Audio file", type="filepath")
btn = gr.Button("Transcribe and Diarize")
gr.Markdown("**Call Transcript:**")
diarized = gr.HighlightedText(label="Call Transcript")
gr.Markdown("Summarize Speaker")
sum_btn = gr.Button("Get Summary")
summary = gr.Textbox(lines=4)
sentiment_btn = gr.Button("Get Customer Sentiment")
analyzed = gr.HighlightedText(color_map=color_map)
with gr.Column():
gr.Markdown("## Example Files")
gr.Examples(
examples=EXAMPLES,
inputs=[audio],
outputs=[diarized],
fn=speech_to_text,
cache_examples=True
)
# when example button is clicked, convert audio file to text and diarize
btn.click(
fn=speech_to_text,
inputs=audio,
outputs=diarized,
)
# when summarize checkboxes are changed, create summary
sum_btn.click(fn=partial(summarize, summarization_pipeline=summarization_pipeline), inputs=[diarized], outputs=summary)
# when sentiment button clicked, display highlighted text and plot
sentiment_btn.click(fn=partial(sentiment, emotion_pipeline=emotion_pipeline), inputs=diarized, outputs=[analyzed])
demo.launch(debug=1)