Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
import os
|
2 |
-
import re
|
3 |
-
import functools
|
4 |
-
from functools import partial
|
5 |
|
6 |
-
import requests
|
7 |
-
import pandas as pd
|
8 |
|
9 |
import torch
|
10 |
import gradio as gr
|
@@ -18,8 +18,6 @@ from utils import speech_to_text as stt
|
|
18 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
19 |
device = 0 if torch.cuda.is_available() else -1
|
20 |
|
21 |
-
# display if the sentiment value is above these thresholds
|
22 |
-
#thresholds = {"joy": 0.99,"anger": 0.95,"surprise": 0.95,"sadness": 0.98,"fear": 0.95,"love": 0.99,}
|
23 |
color_map = {"joy": "green","anger": "red","surprise": "yellow","sadness": "blue","fear": "orange","love": "purple",}
|
24 |
|
25 |
# Audio components
|
@@ -63,9 +61,7 @@ def sentiment(diarized, emotion_pipeline):
|
|
63 |
if "Customer" in speaker_id:
|
64 |
outputs = emotion_pipeline(sentences)
|
65 |
for idx, (o, t) in enumerate(zip(outputs, sentences)):
|
66 |
-
# if o["score"] > thresholds[o["label"]]:
|
67 |
customer_sentiments.append((t, o["label"]))
|
68 |
-
|
69 |
return customer_sentiments
|
70 |
|
71 |
EXAMPLES = [["Customer_Support_Call.wav"]]
|
@@ -95,14 +91,9 @@ with gr.Blocks() as demo:
|
|
95 |
cache_examples=True
|
96 |
)
|
97 |
# when example button is clicked, convert audio file to text and diarize
|
98 |
-
btn.click(
|
99 |
-
fn=speech_to_text,
|
100 |
-
inputs=audio,
|
101 |
-
outputs=diarized,
|
102 |
-
)
|
103 |
# when summarize checkboxes are changed, create summary
|
104 |
sum_btn.click(fn=partial(summarize, summarization_pipeline=summarization_pipeline), inputs=[diarized], outputs=summary)
|
105 |
-
|
106 |
# when sentiment button clicked, display highlighted text and plot
|
107 |
sentiment_btn.click(fn=partial(sentiment, emotion_pipeline=emotion_pipeline), inputs=diarized, outputs=[analyzed])
|
108 |
|
|
|
1 |
import os
|
2 |
+
#import re
|
3 |
+
#import functools
|
4 |
+
#from functools import partial
|
5 |
|
6 |
+
#import requests
|
7 |
+
#import pandas as pd
|
8 |
|
9 |
import torch
|
10 |
import gradio as gr
|
|
|
18 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
19 |
device = 0 if torch.cuda.is_available() else -1
|
20 |
|
|
|
|
|
21 |
color_map = {"joy": "green","anger": "red","surprise": "yellow","sadness": "blue","fear": "orange","love": "purple",}
|
22 |
|
23 |
# Audio components
|
|
|
61 |
if "Customer" in speaker_id:
|
62 |
outputs = emotion_pipeline(sentences)
|
63 |
for idx, (o, t) in enumerate(zip(outputs, sentences)):
|
|
|
64 |
customer_sentiments.append((t, o["label"]))
|
|
|
65 |
return customer_sentiments
|
66 |
|
67 |
EXAMPLES = [["Customer_Support_Call.wav"]]
|
|
|
91 |
cache_examples=True
|
92 |
)
|
93 |
# when example button is clicked, convert audio file to text and diarize
|
94 |
+
btn.click(fn=speech_to_text, inputs=audio, outputs=diarized)
|
|
|
|
|
|
|
|
|
95 |
# when summarize checkboxes are changed, create summary
|
96 |
sum_btn.click(fn=partial(summarize, summarization_pipeline=summarization_pipeline), inputs=[diarized], outputs=summary)
|
|
|
97 |
# when sentiment button clicked, display highlighted text and plot
|
98 |
sentiment_btn.click(fn=partial(sentiment, emotion_pipeline=emotion_pipeline), inputs=diarized, outputs=[analyzed])
|
99 |
|