import os import re import functools from functools import partial import requests import pandas as pd import plotly.express as px import torch import gradio as gr from transformers import pipeline, Wav2Vec2ProcessorWithLM from pyannote.audio import Pipeline import whisperx from utils import split, create_fig from utils import speech_to_text as stt os.environ["TOKENIZERS_PARALLELISM"] = "false" device = 0 if torch.cuda.is_available() else -1 # display if the sentiment value is above these thresholds thresholds = {"joy": 0.99,"anger": 0.95,"surprise": 0.95,"sadness": 0.98,"fear": 0.95,"love": 0.99,} color_map = {"joy": "green","anger": "red","surprise": "yellow","sadness": "blue","fear": "orange","love": "purple",} # Audio components whisper_device = "cuda" if torch.cuda.is_available() else "cpu" whisper = whisperx.load_model("tiny.en", whisper_device) alignment_model, metadata = whisperx.load_align_model(language_code="en", device=whisper_device) speaker_segmentation = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1", use_auth_token=os.environ['ENO_TOKEN']) # Text components emotion_pipeline = pipeline( "text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", device=device, ) summarization_pipeline = pipeline( "summarization", model="knkarthick/MEETING_SUMMARY", device=device ) EXAMPLES = [["Customer_Support_Call.wav"]] speech_to_text = partial( stt, speaker_segmentation=speaker_segmentation, whisper=whisper, alignment_model=alignment_model, metadata=metadata, whisper_device=whisper_device ) def summarize(diarized, summarization_pipeline): text = "" for d in diarized: text += f"\n{d[1]}: {d[0]}" return summarization_pipeline(text)[0]["summary_text"] def sentiment(diarized, emotion_pipeline): customer_sentiments = [] for i in range(0, len(diarized), 2): speaker_speech, speaker_id = diarized[i] sentences = split(speaker_speech) if "Customer" in speaker_id: outputs = emotion_pipeline(sentences) for idx, (o, t) in enumerate(zip(outputs, sentences)): if o["score"] > thresholds[o["label"]]: customer_sentiments.append((t, o["label"])) return customer_sentiments with gr.Blocks() as demo: with gr.Row(): with gr.Column(): audio = gr.Audio(label="Audio file", type="filepath") btn = gr.Button("Transcribe and Diarize") gr.Markdown("**Call Transcript:**") diarized = gr.HighlightedText(label="Call Transcript") gr.Markdown("Summarize Speaker") sum_btn = gr.Button("Get Summary") summary = gr.Textbox(lines=4) sentiment_btn = gr.Button("Get Customer Sentiment") analyzed = gr.HighlightedText(color_map=color_map) with gr.Column(): gr.Markdown("## Example Files") gr.Examples( examples=EXAMPLES, inputs=[audio], outputs=[diarized], fn=speech_to_text, cache_examples=True ) # when example button is clicked, convert audio file to text and diarize btn.click( fn=speech_to_text, inputs=audio, outputs=diarized, ) # when summarize checkboxes are changed, create summary sum_btn.click(fn=partial(summarize, summarization_pipeline=summarization_pipeline), inputs=[diarized], outputs=summary) # when sentiment button clicked, display highlighted text and plot sentiment_btn.click(fn=partial(sentiment, emotion_pipeline=emotion_pipeline), inputs=diarized, outputs=[analyzed]) demo.launch(debug=1)