Spaces:
Paused
Paused
Move vector_db loading
Browse files
app.py
CHANGED
@@ -30,19 +30,17 @@ text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(bloomz_tokenize
|
|
30 |
separator="\n")
|
31 |
documents = text_splitter.split_documents(data)
|
32 |
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
|
37 |
|
38 |
llm = HuggingFacePipeline.from_model_id(
|
39 |
model_id="bigscience/bloomz-1b7",
|
40 |
task="text-generation",
|
41 |
model_kwargs={"temperature" : 0, "max_length" : 500})
|
42 |
|
|
|
43 |
doc_retriever = vectordb.as_retriever()
|
44 |
-
|
45 |
-
|
46 |
shakespeare_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever)
|
47 |
|
48 |
def query(query):
|
|
|
30 |
separator="\n")
|
31 |
documents = text_splitter.split_documents(data)
|
32 |
|
33 |
+
print(documents)
|
|
|
34 |
|
35 |
+
embeddings = HuggingFaceEmbeddings()
|
36 |
|
37 |
llm = HuggingFacePipeline.from_model_id(
|
38 |
model_id="bigscience/bloomz-1b7",
|
39 |
task="text-generation",
|
40 |
model_kwargs={"temperature" : 0, "max_length" : 500})
|
41 |
|
42 |
+
vectordb = Chroma.from_documents(documents=documents, embedding=embeddings)
|
43 |
doc_retriever = vectordb.as_retriever()
|
|
|
|
|
44 |
shakespeare_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever)
|
45 |
|
46 |
def query(query):
|