File size: 7,102 Bytes
8001e7f
 
 
e3f404d
8001e7f
 
 
 
 
 
e3f404d
8001e7f
 
 
 
79fd59c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba08945
 
79fd59c
aeb1e2d
 
 
 
 
b7dad17
aeb1e2d
 
 
b7dad17
aeb1e2d
b7dad17
79fd59c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
207c30a
 
79fd59c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
207c30a
79fd59c
207c30a
79fd59c
8001e7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79fd59c
cc33a9b
 
 
8001e7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79fd59c
8001e7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3f404d
8001e7f
2503cab
e3f404d
cef7a44
79fd59c
2503cab
cef7a44
e3f404d
8001e7f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import spaces

import gradio as gr
import torch
from colpali_engine.models.paligemma_colbert_architecture import ColPali
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
from colpali_engine.utils.colpali_processing_utils import (
    process_images,
    process_queries,
)
from pdf2image import convert_from_path
from PIL import Image
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoProcessor, Idefics3ForConditionalGeneration
import re
import time
from PIL import Image
import torch
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)


## Load idefics
id_processor = AutoProcessor.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3")

id_model = Idefics3ForConditionalGeneration.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3", 
        torch_dtype=torch.bfloat16,
        #_attn_implementation="flash_attention_2"
                                                        ).to("cuda")

BAD_WORDS_IDS = id_processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
EOS_WORDS_IDS = [id_processor.tokenizer.eos_token_id]

# Load colpali model
model_name = "vidore/colpali-v1.2"
token = os.environ.get("HF_TOKEN")
model = ColPali.from_pretrained(
    "vidore/colpaligemma-3b-pt-448-base", torch_dtype=torch.bfloat16, device_map="cuda", token = token).eval()

model.load_adapter(model_name)
model = model.eval()
processor = AutoProcessor.from_pretrained(model_name, token = token)

mock_image = Image.new("RGB", (448, 448), (255, 255, 255))

@spaces.GPU
def model_inference(
    images, text, assistant_prefix= None, decoding_strategy = "Greedy", temperature= 0.4, max_new_tokens=512,
    repetition_penalty=1.2, top_p=0.8
):
    if text == "" and not images:
        gr.Error("Please input a query and optionally image(s).")

    if text == "" and images:
        gr.Error("Please input a text query along the image(s).")

    if isinstance(images, Image.Image):
        images = [images]


    resulting_messages = [
                {
                    "role": "user",
                    "content": [{"type": "image"}] + [
                        {"type": "text", "text": text}
                    ]
                }
            ]

    if assistant_prefix:
      text = f"{assistant_prefix} {text}"


    prompt = id_processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
    inputs = id_processor(text=prompt, images=[images], return_tensors="pt")
    inputs = {k: v.to("cuda") for k, v in inputs.items()}

    generation_args = {
        "max_new_tokens": max_new_tokens,
        "repetition_penalty": repetition_penalty,

    }

    assert decoding_strategy in [
        "Greedy",
        "Top P Sampling",
    ]
    if decoding_strategy == "Greedy":
        generation_args["do_sample"] = False
    elif decoding_strategy == "Top P Sampling":
        generation_args["temperature"] = temperature
        generation_args["do_sample"] = True
        generation_args["top_p"] = top_p


    generation_args.update(inputs)

    # Generate
    generated_ids = id_model.generate(**generation_args)

    generated_texts = id_processor.batch_decode(generated_ids[:, generation_args["input_ids"].size(1):], skip_special_tokens=True)
    return generated_texts[0]



@spaces.GPU
def search(query: str, ds, images, k):

    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    if device != model.device:
        model.to(device)
        
    qs = []
    with torch.no_grad():
        batch_query = process_queries(processor, [query], mock_image)
        batch_query = {k: v.to(device) for k, v in batch_query.items()}
        embeddings_query = model(**batch_query)
        qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))

    retriever_evaluator = CustomEvaluator(is_multi_vector=True)
    scores = retriever_evaluator.evaluate(qs, ds)

    top_k_indices = scores.argsort(axis=1)[0][-k:][::-1]

    results = []
    for idx in top_k_indices:
        results.append((images[idx], f"Page {idx}"))

    return results


def index(files, ds):
    print("Converting files")
    images = convert_files(files)
    print(f"Files converted with {len(images)} images.")
    return index_gpu(images, ds)
    


def convert_files(files):
    images = []
    for f in files:
        images.extend(convert_from_path(f, thread_count=4))

    if len(images) >= 150:
        raise gr.Error("The number of images in the dataset should be less than 150.")
    return images


@spaces.GPU
def index_gpu(images, ds):
    """Example script to run inference with ColPali"""
    
    # run inference - docs
    dataloader = DataLoader(
        images,
        batch_size=4,
        shuffle=False,
        collate_fn=lambda x: process_images(processor, x),
    )

    
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    if device != model.device:
        model.to(device)
        
          
    for batch_doc in tqdm(dataloader):
        with torch.no_grad():
            batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
            embeddings_doc = model(**batch_doc)
        ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
    return f"Uploaded and converted {len(images)} pages", ds, images

@spaces.GPU
def answer_gpu():
    return 0

def get_example():
    return [[["climate_youth_magazine.pdf"], "How much tropical forest is cut annually ?"]]

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models 📚")

    with gr.Row():
        with gr.Column(scale=2):
            gr.Markdown("## 1️⃣ Upload PDFs")
            file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDFs")

            convert_button = gr.Button("🔄 Index documents")
            message = gr.Textbox("Files not yet uploaded", label="Status")
            embeds = gr.State(value=[])
            imgs = gr.State(value=[])
            img_chunk = gr.State(value=[])

        with gr.Column(scale=3):
            gr.Markdown("## 2️⃣ Search")
            query = gr.Textbox(placeholder="Enter your query here", label="Query")
            k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5)

    # with gr.Row():
    #    gr.Examples(
    #        examples=get_example(),
    #        inputs=[file, query],
    #    )

    # Define the actions
    search_button = gr.Button("🔍 Search", variant="primary")
    output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True)

    convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
    search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery])

    answer_button = gr.Button("Answer", variant="primary")
    output = gr.Textbox(label="Output")
    answer_button.click(model_inference, inputs=[output_gallery, query], outputs=output)

if __name__ == "__main__":
    demo.queue(max_size=10).launch(debug=True)