File size: 8,135 Bytes
8001e7f
 
 
e3f404d
8001e7f
 
 
 
 
 
e3f404d
8001e7f
 
 
 
8573be6
 
79fd59c
 
 
 
 
2ae0a8f
79fd59c
 
 
 
 
b7dad17
79fd59c
 
8573be6
79fd59c
8573be6
57c4bbb
 
 
 
 
 
8230329
adafc6a
8573be6
 
 
 
 
597a940
 
20f229d
597a940
 
8573be6
 
a4c6545
8573be6
 
 
 
 
 
 
 
 
8230329
8573be6
79fd59c
 
8573be6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c26916
 
 
8573be6
8001e7f
 
 
 
 
 
9f28ec7
 
 
 
 
 
 
 
 
 
 
 
8001e7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a791fbb
a95df8d
 
6c26916
28ef079
8001e7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a95df8d
 
 
 
 
 
 
 
 
 
 
8001e7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a95df8d
 
6c26916
a95df8d
8001e7f
79fd59c
8001e7f
 
affda77
 
 
e3aae8f
affda77
8001e7f
 
9373b86
fc00b82
8001e7f
 
 
 
 
 
caf5c98
8001e7f
caf5c98
8001e7f
 
79fd59c
8001e7f
 
 
 
 
caf5c98
fc00b82
 
 
 
 
 
8001e7f
 
caf5c98
8001e7f
e3f404d
8001e7f
dc5eecc
e3f404d
cef7a44
affda77
dc5eecc
cef7a44
e3f404d
8001e7f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
import spaces

import gradio as gr
import torch
from colpali_engine.models.paligemma_colbert_architecture import ColPali
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
from colpali_engine.utils.colpali_processing_utils import (
    process_images,
    process_queries,
)
from pdf2image import convert_from_path
from PIL import Image
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
import re
import time
from PIL import Image
import torch
import subprocess
subprocess.run('python pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)






@spaces.GPU
def model_inference(
    images, text,
):
    
    # print(type(images))
    # print(images[0])
    # images = Image.open(images[0][0])
    # print(images)
    # print(type(images))
    images = [{"type": "image", "image": Image.open(image[0])} for image in images]
    images.append({"type": "text", "text": text})
    print(images)
    # model = Qwen2VLForConditionalGeneration.from_pretrained(
    # "Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
    # )

    #We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
    model = Qwen2VLForConditionalGeneration.from_pretrained(
        "Qwen/Qwen2-VL-2B-Instruct",
        attn_implementation="flash_attention_2", 
        trust_remote_code=True, 
        torch_dtype="auto").cuda().eval()

    # default processer
    processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")

    # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
    # min_pixels = 256*28*28
    # max_pixels = 1280*28*28
    # processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)

    messages = [
        {
            "role": "user",
            "content": images,
        }
    ]

    # Preparation for inference
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to("cuda")

    # Inference: Generation of the output
    generated_ids = model.generate(**inputs, max_new_tokens=128)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )
    del model
    del processor
    torch.cuda.empty_cache()
    return output_text[0]



@spaces.GPU
def search(query: str, ds, images, k):

    # Load colpali model
    model_name = "vidore/colpali-v1.2"
    token = os.environ.get("HF_TOKEN")
    model = ColPali.from_pretrained(
        "vidore/colpaligemma-3b-pt-448-base", torch_dtype=torch.bfloat16, device_map="cuda", token = token).eval()

    model.load_adapter(model_name)
    model = model.eval()
    processor = AutoProcessor.from_pretrained(model_name, token = token)

    mock_image = Image.new("RGB", (448, 448), (255, 255, 255))

    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    if device != model.device:
        model.to(device)
        
    qs = []
    with torch.no_grad():
        batch_query = process_queries(processor, [query], mock_image)
        batch_query = {k: v.to(device) for k, v in batch_query.items()}
        embeddings_query = model(**batch_query)
        qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))

    retriever_evaluator = CustomEvaluator(is_multi_vector=True)
    scores = retriever_evaluator.evaluate(qs, ds)

    top_k_indices = scores.argsort(axis=1)[0][-k:][::-1]

    results = []
    for idx in top_k_indices:
        results.append((images[idx])) #, f"Page {idx}"
    del model
    del processor
    torch.cuda.empty_cache()
    print("done")
    return results


def index(files, ds):
    print("Converting files")
    images = convert_files(files)
    print(f"Files converted with {len(images)} images.")
    return index_gpu(images, ds)
    


def convert_files(files):
    images = []
    for f in files:
        images.extend(convert_from_path(f, thread_count=4))

    if len(images) >= 150:
        raise gr.Error("The number of images in the dataset should be less than 150.")
    return images


@spaces.GPU
def index_gpu(images, ds):
    """Example script to run inference with ColPali"""
        # Load colpali model
    model_name = "vidore/colpali-v1.2"
    token = os.environ.get("HF_TOKEN")
    model = ColPali.from_pretrained(
        "vidore/colpaligemma-3b-pt-448-base", torch_dtype=torch.bfloat16, device_map="cuda", token = token).eval()

    model.load_adapter(model_name)
    model = model.eval()
    processor = AutoProcessor.from_pretrained(model_name, token = token)

    mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
    # run inference - docs
    dataloader = DataLoader(
        images,
        batch_size=4,
        shuffle=False,
        collate_fn=lambda x: process_images(processor, x),
    )

    
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    if device != model.device:
        model.to(device)
        
          
    for batch_doc in tqdm(dataloader):
        with torch.no_grad():
            batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
            embeddings_doc = model(**batch_doc)
        ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
    del model
    del processor
    torch.cuda.empty_cache()
    print("done")
    return f"Uploaded and converted {len(images)} pages", ds, images


def get_example():
    return [
        [["RAPPORT_DEVELOPPEMENT_DURABLE_2019.pdf"], "Quels sont les 4 axes majeurs des achats?"],
        [["RAPPORT_DEVELOPPEMENT_DURABLE_2019.pdf"], "Quelles sont les actions entreprise en Afrique du Sud?"],
        [["RAPPORT_DEVELOPPEMENT_DURABLE_2019.pdf"], "fais moi un tableau markdown de la répartition homme femme"],
        ]

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# ColPali + Qwen2VL 2B: Efficient Document Retrieval with Vision Language Models 📚")
    

    with gr.Row():
        with gr.Column(scale=2):
            gr.Markdown("## 1️⃣ Upload PDFs")
            file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDFs")

            
            message = gr.Textbox("Files not yet uploaded", label="Status")
            convert_button = gr.Button("🔄 Index documents")
            embeds = gr.State(value=[])
            imgs = gr.State(value=[])
            img_chunk = gr.State(value=[])

        with gr.Column(scale=3):
            gr.Markdown("## 2️⃣ Search")
            query = gr.Textbox(placeholder="Enter your query here", label="Query")
            k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5)
            search_button = gr.Button("🔍 Search", variant="primary")
    
    with gr.Row():
        gr.Examples(
            examples=get_example(),
            inputs=[file, query],
        )

    # Define the actions
    
    output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True)

    convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
    search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery])

    answer_button = gr.Button("Answer", variant="primary")
    output = gr.Markdown(label="Output")
    answer_button.click(model_inference, inputs=[output_gallery, query], outputs=output)

if __name__ == "__main__":
    demo.queue(max_size=10).launch(debug=True)