File size: 707 Bytes
c778ae5
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
from transformers import AutoTokenizer, AutoModelForCausalLM
import streamlit as st

tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", flash_attn=True, flash_rotary=True, fused_dense=True, device_map="cuda", trust_remote_code=True)

prompt = st.text_input("Input prompt", value="Write a detailed analogy between mathematics and a lighthouse.")
length = st.number_input("Max token length", value=200)
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False)
outputs = model.generate(**inputs, max_length=length)
text = tokenizer.batch_decode(outputs)[0]
st.write(text)