Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import streamlit as st | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", flash_attn=True, flash_rotary=True, fused_dense=True, device_map="cuda", trust_remote_code=True) | |
prompt = st.text_input("Input prompt", value="Write a detailed analogy between mathematics and a lighthouse.") | |
length = st.number_input("Max token length", value=200) | |
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False) | |
outputs = model.generate(**inputs, max_length=length) | |
text = tokenizer.batch_decode(outputs)[0] | |
st.write(text) | |