Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import gradio as gr | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype=torch.float32, device_map="cpu", trust_remote_code=True) | |
def generate(prompt, length): | |
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False) | |
if length < len(inputs): | |
length = len(inputs) | |
outputs = model.generate(**inputs, max_length=length) | |
return tokenizer.batch_decode(outputs)[0] | |
demo = gr.Interface(fn=generate, inputs=["text", gr.Number(value=50, label="max length",maximum=200)], outputs="text") | |
if __name__ == "__main__": | |
demo.launch(show_api=False) | |