Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import gradio as gr | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
"microsoft/phi-2", | |
torch_dtype=torch.float32, | |
device_map="cpu", | |
trust_remote_code=True, | |
) | |
def generate(prompt, length): | |
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False) | |
if length < len(inputs): | |
length = len(inputs) | |
outputs = model.generate(**inputs, max_length=length) | |
return tokenizer.batch_decode(outputs)[0] | |
demo = gr.Interface( | |
fn=generate, | |
inputs=[ | |
gr.Text( | |
label="prompt", | |
value="Write a detailed analogy between mathematics and a lighthouse.", | |
), | |
gr.Number(value=50, label="max length", maximum=200), | |
], | |
outputs="text", | |
) | |
if __name__ == "__main__": | |
demo.launch(show_api=False) | |