phi-2 / app.py
Benjamin Gonzalez
format
b461977
raw
history blame
952 Bytes
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
"microsoft/phi-2",
torch_dtype=torch.float32,
device_map="cpu",
trust_remote_code=True,
)
def generate(prompt, length):
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False)
if length < len(inputs):
length = len(inputs)
outputs = model.generate(**inputs, max_length=length)
return tokenizer.batch_decode(outputs)[0]
demo = gr.Interface(
fn=generate,
inputs=[
gr.Text(
label="prompt",
value="Write a detailed analogy between mathematics and a lighthouse.",
),
gr.Number(value=50, label="max length", maximum=200),
],
outputs="text",
)
if __name__ == "__main__":
demo.launch(show_api=False)