Spaces:
Sleeping
Sleeping
import torch | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
TextIteratorStreamer, | |
StoppingCriteria, | |
) | |
from threading import Thread | |
import gradio as gr | |
has_gpu = torch.cuda.is_available() | |
device = "cuda" if has_gpu else "cpu" | |
torch.set_default_device(device) | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
"microsoft/phi-2", | |
# torch_dtype=torch.float16 if has_gpu else torch.float32, | |
torch_dtype=torch.float32, | |
device_map=device, | |
trust_remote_code=True, | |
) | |
# custom stopping criteria (avoid generating hallucinated prompts) | |
# still includes these tokens in the output but stops generating after them | |
class Phi2StoppingCriteria(StoppingCriteria): | |
def __init__(self): | |
stop_list = ["Exercise", "Exercises", "exercises:", "<|endoftext|>"] | |
tokenphrases = [] | |
for token in stop_list: | |
tokenphrases.append( | |
tokenizer(token, return_tensors="pt").input_ids[0].tolist() | |
) | |
self.tokenphrases = tokenphrases | |
def __call__( | |
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs | |
) -> bool: | |
for tokenphrase in self.tokenphrases: | |
if tokenphrase == input_ids[0].tolist()[-len(tokenphrase):]: | |
return True | |
def generate( | |
prompt, | |
max_new_tokens=75, | |
terminate_hallucinated_prompts=True, | |
sampling=False, | |
temperature=1.0, | |
top_k=50, | |
top_p=1.0, | |
): | |
inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
# thanks https://huggingface.co/spaces/joaogante/transformers_streaming/blob/main/app.py | |
streamer = TextIteratorStreamer(tokenizer) | |
generation_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=sampling, | |
stopping_criteria=[Phi2StoppingCriteria()] | |
if terminate_hallucinated_prompts | |
else None, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
model_output = "" | |
for new_text in streamer: | |
model_output += new_text | |
yield model_output | |
return model_output | |
demo = gr.Interface( | |
fn=generate, | |
inputs=[ | |
gr.Text( | |
label="prompt", | |
value="Write a detailed analogy between mathematics and a lighthouse.", | |
), | |
gr.Slider(minimum=0, maximum=500, step=1, value=50, label="max new tokens"), | |
gr.Checkbox( | |
value=True, | |
label="terminate hallucinated prompts", | |
info="stop generation after getting tokens like 'Exercise' or '<|endoftext|>, but will not remove them.", | |
), | |
gr.Checkbox( | |
label="do sampling", | |
info="introduce randomness for non-deterministic results. required for below options", | |
value=True, | |
), | |
gr.Slider( | |
label="temperature", | |
info="higher temperature means more randomness", | |
value=1.0, | |
minimum=0.1, | |
maximum=1.5, | |
step=0.1, | |
), | |
gr.Slider( | |
label="top-k", | |
info="consider only the k most likely tokens", | |
value=50, | |
minimum=1, | |
maximum=100, | |
step=1, | |
), | |
gr.Slider( | |
label="top-p", | |
info="choose from the smallest possible set of words whose cumulative probability exceeds the probability p", | |
value=1.0, | |
minimum=0.1, | |
maximum=1.0, | |
step=0.1, | |
), | |
], | |
outputs="text", | |
examples=[ | |
[ | |
"Write a detailed analogy between mathematics and a lighthouse.", | |
75, | |
], | |
[ | |
"Instruct: Write a detailed analogy between mathematics and a lighthouse.\nOutput:", | |
100, | |
], | |
[ | |
"Alice: I don't know why, I'm struggling to maintain focus while studying. Any suggestions?\n\nBob: ", | |
150, | |
], | |
[ | |
'''``` | |
def print_prime(n): | |
""" | |
Print all primes between 1 and n | |
"""\n''', | |
125, | |
], | |
], | |
title="Microsoft Phi-2", | |
description="Unofficial demo of Microsoft Phi-2, a high performing model with only 2.7B parameters.", | |
) | |
if __name__ == "__main__": | |
demo.queue().launch(show_api=False) | |