Spaces:
Sleeping
Sleeping
Benjamin G
commited on
Commit
·
0439661
1
Parent(s):
c4f947a
added streaming
Browse files- app.py +79 -22
- requirements.txt +0 -15
app.py
CHANGED
@@ -3,47 +3,70 @@ from transformers import (
|
|
3 |
AutoTokenizer,
|
4 |
AutoModelForCausalLM,
|
5 |
TextIteratorStreamer,
|
6 |
-
|
7 |
)
|
8 |
from threading import Thread
|
9 |
import gradio as gr
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
13 |
|
14 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
16 |
"microsoft/phi-2",
|
17 |
-
torch_dtype=torch.float16 if
|
|
|
|
|
18 |
trust_remote_code=True,
|
19 |
)
|
20 |
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
)
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
-
def generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
inputs = tokenizer(prompt, return_tensors="pt")
|
39 |
# thanks https://huggingface.co/spaces/joaogante/transformers_streaming/blob/main/app.py
|
40 |
-
streamer = TextIteratorStreamer(
|
41 |
generation_kwargs = dict(
|
42 |
inputs,
|
43 |
streamer=streamer,
|
44 |
max_new_tokens=max_new_tokens,
|
45 |
-
do_sample=
|
46 |
-
stopping_criteria=
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
49 |
thread.start()
|
@@ -61,7 +84,41 @@ demo = gr.Interface(
|
|
61 |
label="prompt",
|
62 |
value="Write a detailed analogy between mathematics and a lighthouse.",
|
63 |
),
|
64 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
],
|
66 |
outputs="text",
|
67 |
examples=[
|
@@ -84,7 +141,7 @@ demo = gr.Interface(
|
|
84 |
"""\n''',
|
85 |
100,
|
86 |
],
|
87 |
-
["User: How does sleep affect mood?\nAI:",
|
88 |
["Who was Ada Lovelace?", 100],
|
89 |
["Explain the concept of skip lists.", 125],
|
90 |
],
|
|
|
3 |
AutoTokenizer,
|
4 |
AutoModelForCausalLM,
|
5 |
TextIteratorStreamer,
|
6 |
+
StoppingCriteria,
|
7 |
)
|
8 |
from threading import Thread
|
9 |
import gradio as gr
|
10 |
|
11 |
+
# has_gpu = torch.cuda.is_available()
|
12 |
+
has_gpu = False
|
13 |
+
device = "cuda" if has_gpu else "cpu"
|
14 |
+
|
15 |
+
torch.set_default_device(device)
|
16 |
|
17 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
18 |
model = AutoModelForCausalLM.from_pretrained(
|
19 |
"microsoft/phi-2",
|
20 |
+
# torch_dtype=torch.float16 if has_gpu else torch.float32,
|
21 |
+
torch_dtype=torch.float32,
|
22 |
+
device_map=device,
|
23 |
trust_remote_code=True,
|
24 |
)
|
25 |
|
26 |
|
27 |
+
# custom stopping criteria (avoid generating hallucinated prompts)
|
28 |
+
# still includes these tokens in the output but stops generating after them
|
29 |
+
class Phi2StoppingCriteria(StoppingCriteria):
|
30 |
+
def __init__(self):
|
31 |
+
stop_list = ["Exercise", "Exercises", "<|endoftext|>"]
|
32 |
+
tokenphrases = []
|
33 |
+
for token in stop_list:
|
34 |
+
tokenphrases.append(
|
35 |
+
tokenizer(token, return_tensors="pt").input_ids[0].tolist()
|
36 |
+
)
|
37 |
+
self.tokenphrases = tokenphrases
|
38 |
|
39 |
+
def __call__(
|
40 |
+
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
|
41 |
+
) -> bool:
|
42 |
+
for tokenphrase in self.tokenphrases:
|
43 |
+
if tokenphrase == input_ids[0].tolist()[-len(tokenphrase):]:
|
44 |
+
return True
|
45 |
|
46 |
|
47 |
+
def generate(
|
48 |
+
prompt,
|
49 |
+
max_new_tokens,
|
50 |
+
avoid_hallucinated_prompts,
|
51 |
+
sampling,
|
52 |
+
temperature,
|
53 |
+
top_k,
|
54 |
+
top_p,
|
55 |
+
):
|
56 |
inputs = tokenizer(prompt, return_tensors="pt")
|
57 |
# thanks https://huggingface.co/spaces/joaogante/transformers_streaming/blob/main/app.py
|
58 |
+
streamer = TextIteratorStreamer(tokenizer)
|
59 |
generation_kwargs = dict(
|
60 |
inputs,
|
61 |
streamer=streamer,
|
62 |
max_new_tokens=max_new_tokens,
|
63 |
+
do_sample=sampling,
|
64 |
+
stopping_criteria=[Phi2StoppingCriteria()]
|
65 |
+
if avoid_hallucinated_prompts
|
66 |
+
else None,
|
67 |
+
temperature=temperature,
|
68 |
+
top_k=top_k,
|
69 |
+
top_p=top_p,
|
70 |
)
|
71 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
72 |
thread.start()
|
|
|
84 |
label="prompt",
|
85 |
value="Write a detailed analogy between mathematics and a lighthouse.",
|
86 |
),
|
87 |
+
gr.Slider(minimum=0, maximum=500, step=1, value=100, label="max new tokens"),
|
88 |
+
gr.Checkbox(
|
89 |
+
value=True,
|
90 |
+
label="avoid hallucinated prompts",
|
91 |
+
info="stop generation after getting tokens like 'Exercise' or '<|endoftext|>, but will not remove them.",
|
92 |
+
),
|
93 |
+
gr.Checkbox(
|
94 |
+
label="do sampling",
|
95 |
+
info="introduce randomness for non-deterministic results. required for below options",
|
96 |
+
value=True,
|
97 |
+
),
|
98 |
+
gr.Slider(
|
99 |
+
label="temperature",
|
100 |
+
info="higher temperature means more randomness",
|
101 |
+
value=1.0,
|
102 |
+
minimum=0.1,
|
103 |
+
maximum=1.5,
|
104 |
+
step=0.1,
|
105 |
+
),
|
106 |
+
gr.Slider(
|
107 |
+
label="top-k",
|
108 |
+
info="consider only the k most likely tokens",
|
109 |
+
value=50,
|
110 |
+
minimum=1,
|
111 |
+
maximum=100,
|
112 |
+
step=1,
|
113 |
+
),
|
114 |
+
gr.Slider(
|
115 |
+
label="top-p",
|
116 |
+
info="choose from the smallest possible set of words whose cumulative probability exceeds the probability p",
|
117 |
+
value=1.0,
|
118 |
+
minimum=0.1,
|
119 |
+
maximum=1.0,
|
120 |
+
step=0.1,
|
121 |
+
),
|
122 |
],
|
123 |
outputs="text",
|
124 |
examples=[
|
|
|
141 |
"""\n''',
|
142 |
100,
|
143 |
],
|
144 |
+
["User: How does sleep affect mood?\nAI:", 75],
|
145 |
["Who was Ada Lovelace?", 100],
|
146 |
["Explain the concept of skip lists.", 125],
|
147 |
],
|
requirements.txt
CHANGED
@@ -1,20 +1,5 @@
|
|
1 |
-
mlflow==2.6.0
|
2 |
-
cloudpickle==2.2.1
|
3 |
-
jsonpickle==3.0.1
|
4 |
-
mlflow-skinny==2.6.0
|
5 |
-
azureml-core==1.51.0.post1
|
6 |
-
azureml-mlflow==1.51.0
|
7 |
-
azureml-metrics[all]==0.0.32
|
8 |
scikit-learn==1.2.2
|
9 |
-
cryptography==41.0.1
|
10 |
-
python-dateutil==2.8.2
|
11 |
-
datasets==2.14.6
|
12 |
-
soundfile==0.12.1
|
13 |
-
librosa==0.10.1
|
14 |
diffusers==0.21.4
|
15 |
-
sentencepiece==0.1.99
|
16 |
transformers==4.34.0
|
17 |
accelerate==0.23.0
|
18 |
-
Pillow==9.4.0
|
19 |
einops
|
20 |
-
azureml-evaluate-mlflow==0.0.32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
scikit-learn==1.2.2
|
|
|
|
|
|
|
|
|
|
|
2 |
diffusers==0.21.4
|
|
|
3 |
transformers==4.34.0
|
4 |
accelerate==0.23.0
|
|
|
5 |
einops
|
|