Benjamin Gonzalez commited on
Commit
5315eed
·
1 Parent(s): f647657

switch to gradio

Browse files
Files changed (1) hide show
  1. app.py +10 -7
app.py CHANGED
@@ -1,12 +1,15 @@
1
  from transformers import AutoTokenizer, AutoModelForCausalLM
2
- import streamlit as st
3
 
4
  tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
5
  model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", flash_attn=True, flash_rotary=True, fused_dense=True, device_map="cuda", trust_remote_code=True)
6
 
7
- prompt = st.text_input("Input prompt", value="Write a detailed analogy between mathematics and a lighthouse.")
8
- length = st.number_input("Max token length", value=200)
9
- inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False)
10
- outputs = model.generate(**inputs, max_length=length)
11
- text = tokenizer.batch_decode(outputs)[0]
12
- st.write(text)
 
 
 
 
1
  from transformers import AutoTokenizer, AutoModelForCausalLM
2
+ import gradio as gr
3
 
4
  tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
5
  model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", flash_attn=True, flash_rotary=True, fused_dense=True, device_map="cuda", trust_remote_code=True)
6
 
7
+ def generate(prompt, length):
8
+ inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False)
9
+ outputs = model.generate(**inputs, max_length=length)
10
+ return tokenizer.batch_decode(outputs)[0]
11
+
12
+ demo = gr.Interface(fn=generate, inputs=["text", "number"], outputs="text")
13
+
14
+ if __name__ == "__main__":
15
+ demo.launch(show_api=False)