Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
import torchvision.transforms as transforms | |
from torchvision import models | |
from PIL import Image | |
import os | |
import random | |
class ResNet50(nn.Module): | |
def __init__(self): | |
super(ResNet50, self).__init__() | |
self.resnet = models.resnet50(pretrained=True) | |
for param in self.resnet.parameters(): | |
param.requires_grad = False | |
self.resnet.fc = nn.Sequential( | |
nn.Linear(2048, 2) | |
) | |
def forward(self, x): | |
x = self.resnet(x) | |
return x |