import streamlit as st import torch from PIL import Image from torchvision import transforms from model import ResNet50 # Assuming your model architecture is defined in a separate file called model.py # Load the model model = ResNet50() model.load_state_dict(torch.load('best_modelv2.pth', map_location=torch.device('cpu'))) model.eval() # Define transform for input images data_transforms = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # Function to predict image label def predict_image_label(image): # Preprocess the image image = data_transforms(image).unsqueeze(0) # Make prediction with torch.no_grad(): output = model(image) _, predicted = torch.max(output, 1) return predicted.item() # Streamlit app st.title("Leaf or Plant Classifier") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Display the uploaded image image = Image.open(uploaded_file) st.image(image, caption='Uploaded Image', use_column_width=True) # Classify the image prediction = predict_image_label(image) label = 'Leaf' if prediction == 0 else 'Plant' st.write(f"Prediction: {label}")