Spaces:
Runtime error
Runtime error
File size: 4,839 Bytes
b6476a0 04e9b0f b6476a0 b685cf0 b6476a0 04e9b0f b6476a0 b685cf0 b6476a0 5c3d937 b6476a0 4f19c28 5c3d937 4f19c28 5c3d937 4f19c28 5c3d937 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import gzip
import io
import json
import random
import re
import tempfile
from typing import Dict, List, Optional
from PIL import Image
import requests
import streamlit as st
http_session = requests.Session()
API_URL = "https://world.openfoodfacts.org/api/v0"
PRODUCT_URL = API_URL + "/product"
OFF_IMAGE_BASE_URL = "https://static.openfoodfacts.org/images/products"
BARCODE_PATH_REGEX = re.compile(r"^(...)(...)(...)(.*)$")
@st.cache(allow_output_mutation=True)
def load_nn_data(url: str):
r = http_session.get(url)
with gzip.open(io.BytesIO(r.content), "rt") as f:
return {int(key): value for key, value in json.loads(f.read()).items()}
@st.cache(allow_output_mutation=True)
def load_logo_data(url: str):
r = http_session.get(url)
with gzip.open(io.BytesIO(r.content), "rt") as f:
return {
int(item["id"]): item for item in (json.loads(x) for x in map(str.strip, f))
}
def get_image_from_url(
image_url: str,
error_raise: bool = False,
session: Optional[requests.Session] = None,
) -> Optional[Image.Image]:
if session:
r = http_session.get(image_url)
else:
r = requests.get(image_url)
if error_raise:
r.raise_for_status()
if r.status_code != 200:
return None
with tempfile.NamedTemporaryFile() as f:
f.write(r.content)
image = Image.open(f.name)
return image
def split_barcode(barcode: str) -> List[str]:
if not barcode.isdigit():
raise ValueError("unknown barcode format: {}".format(barcode))
match = BARCODE_PATH_REGEX.fullmatch(barcode)
if match:
return [x for x in match.groups() if x]
return [barcode]
def get_cropped_image(barcode: str, image_id: str, bounding_box):
image_path = generate_image_path(barcode, image_id)
url = OFF_IMAGE_BASE_URL + image_path
image = get_image_from_url(url, session=http_session)
if image is None:
return
ymin, xmin, ymax, xmax = bounding_box
(left, right, top, bottom) = (
xmin * image.width,
xmax * image.width,
ymin * image.height,
ymax * image.height,
)
return image.crop((left, top, right, bottom))
def generate_image_path(barcode: str, image_id: str) -> str:
splitted_barcode = split_barcode(barcode)
return "/{}/{}.jpg".format("/".join(splitted_barcode), image_id)
def display_predictions(
logo_data: Dict,
nn_data: Dict,
logo_id: Optional[int] = None,
):
if not logo_id:
logo_id = random.choice(list(nn_data.keys()))
st.write(f"Logo ID: {logo_id}")
logo = logo_data[logo_id]
logo_nn_data = nn_data[logo_id]
nn_ids = logo_nn_data["ids"]
nn_distances = logo_nn_data["distances"]
annotation = logo_nn_data["annotation"]
cropped_image = get_cropped_image(
logo["barcode"], logo["image_id"], logo["bounding_box"]
)
if cropped_image is None:
return
st.image(cropped_image, annotation, width=200)
cropped_images: List[Image.Image] = []
captions: List[str] = []
progress_bar = st.progress(0)
for i, (closest_id, distance) in enumerate(zip(nn_ids, nn_distances)):
progress_bar.progress((i + 1) / len(nn_ids))
closest_logo = logo_data[closest_id]
cropped_image = get_cropped_image(
closest_logo["barcode"],
closest_logo["image_id"],
closest_logo["bounding_box"],
)
if cropped_image is None:
continue
if cropped_image.height > cropped_image.width:
cropped_image = cropped_image.rotate(90)
cropped_images.append(cropped_image)
captions.append(f"distance: {distance}")
if cropped_images:
st.image(cropped_images, captions, width=200)
st.sidebar.title("Logo Nearest Neighbors Demo")
st.sidebar.write(
"Get first 100 nearest neighbors for a random annotated logo.\n\n"
"CLIP model is used to generate embeddings, and nearest neighbors "
"are computed either using a brute-force approach or with ANN."
)
logo_id = st.sidebar.number_input("logo ID", step=1) or None
approximate = (
st.sidebar.checkbox(
"ANN (HNSW)",
value=False,
help="Display approximate neighbors (instead of real "
"neighbors computed using brute-force approach",
)
or None
)
nn_data = load_nn_data(
f"https://static.openfoodfacts.org/data/logos/{'hnsw_50_closest_neighbours' if approximate else 'exact_100_neighbours'}.json.gz"
)
logo_data = load_logo_data(
"https://static.openfoodfacts.org/data/logos/logo_annotations.jsonl.gz"
)
if approximate:
st.write("Using approximate nearest neighbors method")
else:
st.write("Using exact (brute-force) nearest neighbors method")
display_predictions(logo_data=logo_data, nn_data=nn_data, logo_id=logo_id)
|