Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
|
3 |
+
os.system('pip install torch==1.9.0 torchvision==0.10.0')
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
# check pytorch installation:
|
7 |
+
import torch, torchvision
|
8 |
+
print(torch.__version__, torch.cuda.is_available())
|
9 |
+
assert torch.__version__.startswith("1.9") # please manually install torch 1.9 if Colab changes its default version
|
10 |
+
# Some basic setup:
|
11 |
+
# Setup detectron2 logger
|
12 |
+
import detectron2
|
13 |
+
from detectron2.utils.logger import setup_logger
|
14 |
+
# import some common libraries
|
15 |
+
import numpy as np
|
16 |
+
import os, json, cv2, random
|
17 |
+
# import some common detectron2 utilities
|
18 |
+
from detectron2 import model_zoo
|
19 |
+
from detectron2.engine import DefaultPredictor
|
20 |
+
from detectron2.config import get_cfg
|
21 |
+
from detectron2.utils.visualizer import Visualizer, ColorMode
|
22 |
+
from detectron2.data import MetadataCatalog, DatasetCatalog
|
23 |
+
from PIL import Image
|
24 |
+
from pathlib import Path
|
25 |
+
from detectron2.data.datasets import register_coco_instances
|
26 |
+
from matplotlib import pyplot as plt
|
27 |
+
|
28 |
+
|
29 |
+
cfg = get_cfg()
|
30 |
+
cfg.MODEL.DEVICE='cpu'
|
31 |
+
# add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library
|
32 |
+
cfg.INPUT.MASK_FORMAT='bitmask'
|
33 |
+
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 3
|
34 |
+
cfg.TEST.DETECTIONS_PER_IMAGE = 1000
|
35 |
+
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
|
36 |
+
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model
|
37 |
+
# Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as well
|
38 |
+
cfg.MODEL.WEIGHTS = "model_final.pth"
|
39 |
+
|
40 |
+
predictor = DefaultPredictor(cfg)
|
41 |
+
|
42 |
+
|
43 |
+
def inference(img):
|
44 |
+
# im = cv2.imread(img.name)
|
45 |
+
im = cv2.imread(img)
|
46 |
+
outputs = predictor(im)
|
47 |
+
|
48 |
+
take = outputs['instances'].scores >= 0.5 #Threshold
|
49 |
+
pred_masks = outputs['instances'].pred_masks[take].cpu().numpy()
|
50 |
+
|
51 |
+
mask = np.stack(pred_masks)
|
52 |
+
mask = np.any(mask == 1, axis=0)
|
53 |
+
|
54 |
+
p = plt.imshow(im,cmap='gray')
|
55 |
+
p1 = plt.imshow(mask, alpha=0.4)
|
56 |
+
|
57 |
+
return plt
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
title = "Sartorius Cell Instance Segmentation"
|
62 |
+
description = "Sartorius Cell Instance Segmentation Demo: Current Kaggle competition - kaggle.com/c/sartorius-cell-instance-segmentation"
|
63 |
+
article = "<p style='text-align: center'><a href='https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/' target='_blank'>Detectron2: A PyTorch-based modular object detection library</a> | <a href='https://github.com/facebookresearch/detectron2' target='_blank'>Github Repo</a></p>"
|
64 |
+
examples = [['0030fd0e6378.png']]
|
65 |
+
gr.Interface(inference, inputs=gr.inputs.Image(type="filepath"), outputs=gr.outputs.Image('plot') ,enable_queue=True, title=title,
|
66 |
+
description=description,
|
67 |
+
article=article,
|
68 |
+
examples=examples).launch(debug=False)
|