GPT2-Amharic / app.py
rasyosef's picture
Update app.py
4646178 verified
raw
history blame
2.69 kB
import gradio as gr
from threading import Thread
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TextIteratorStreamer
model_id = "rasyosef/gpt2-medium-amharic-28k-512"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
gpt2_am = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
def generate(prompt):
prompt_length = len(tokenizer.tokenize(prompt))
if prompt_length >= 128:
yield prompt + "\n\nPrompt is too long. It needs to be less than 128 tokens."
else:
max_new_tokens = max(0, 128 - prompt_length)
streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=False, skip_special_tokens=True, timeout=300.0)
thread = Thread(
target=gpt2_am,
kwargs={
"text_inputs": prompt,
"max_new_tokens": max_new_tokens,
"temperature": 0.4,
"do_sample": True,
"top_k": 8,
"top_p": 0.8,
"repetition_penalty": 1.4,
"streamer": streamer
})
thread.start()
generated_text = ""
for word in streamer:
generated_text += word
response = generated_text.strip()
yield response
with gr.Blocks(css="#prompt_textbox textarea {color: blue}") as demo:
gr.Markdown("""
# GPT2 Amharic
This is a demo for a smaller version of OpenAI's [gpt2](https://huggingface.co/openai-community/gpt2) decoder transformer model pretrained for 2 days on `290 million` tokens of **Amharic** text. The context size of [gpt2-medium-amharic](https://huggingface.co/rasyosef/gpt2-medium-amharic-28k-512) is 512 tokens. This is a base model and hasn't undergone any supervised finetuing yet.
Please **enter a prompt** and click the **Generate** button to generate completions for the prompt.
#### Text generation parameters:
- `temperature` : **0.4**
- `do_sample` : **True**
- `top_k` : **8**
- `top_p` : **0.8**
- `repetition_penalty` : **1.4**
""")
prompt = gr.Textbox(label="Prompt", placeholder="Enter prompt here", lines=4, interactive=True, elem_id="prompt_textbox")
with gr.Row():
with gr.Column():
gen = gr.Button("Generate")
with gr.Column():
btn = gr.ClearButton([prompt])
gen.click(generate, inputs=[prompt], outputs=[prompt])
examples = gr.Examples(
examples=[
"አዲስ አበባ",
"በእንግሊዙ ፕሬሚየር ሊግ",
"ፕሬዚዳንት ዶናልድ ትራምፕ",
"በመስቀል አደባባይ"
],
inputs=[prompt],
)
demo.queue().launch(debug=True)