Spaces:
Running
Running
import os | |
os.system(f"pip install gradio > /dev/null 2>&1") | |
os.system(f"pip install -qq transformers scipy ftfy accelerate > /dev/null 2>&1") | |
os.system(f"pip install -qq --upgrade diffusers[torch] > /dev/null 2>&1") | |
os.system(f"git clone https://github.com/v8hid/infinite-zoom-stable-diffusion.git") | |
os.system(f"pip install imageio") | |
os.system(f"pip install diffusers") | |
import sys | |
sys.path.extend(['infinite-zoom-stable-diffusion/']) | |
from helpers import * | |
from diffusers import StableDiffusionInpaintPipeline, EulerAncestralDiscreteScheduler | |
from PIL import Image | |
import gradio as gr | |
import numpy as np | |
import torch | |
import os | |
import time | |
os.environ["CUDA_VISIBLE_DEVICES"] = "0" | |
inpaint_model_list = [ | |
"stabilityai/stable-diffusion-2-inpainting", | |
"runwayml/stable-diffusion-inpainting", | |
"parlance/dreamlike-diffusion-1.0-inpainting", | |
"ghunkins/stable-diffusion-liberty-inpainting", | |
"ImNoOne/f222-inpainting-diffusers" | |
] | |
default_prompt = "A psychedelic jungle with trees that have glowing, fractal-like patterns, Simon stalenhag poster 1920s style, street level view, hyper futuristic, 8k resolution, hyper realistic" | |
default_negative_prompt = "frames, borderline, text, charachter, duplicate, error, out of frame, watermark, low quality, ugly, deformed, blur" | |
def zoom( | |
model_id, | |
prompts_array, | |
negative_prompt, | |
num_outpainting_steps, | |
guidance_scale, | |
num_inference_steps, | |
custom_init_image | |
): | |
prompts = {} | |
for x in prompts_array: | |
try: | |
key = int(x[0]) | |
value = str(x[1]) | |
prompts[key] = value | |
except ValueError: | |
pass | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16, | |
) | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config( | |
pipe.scheduler.config) | |
pipe = pipe.to("cuda") | |
pipe.safety_checker = None | |
pipe.enable_attention_slicing() | |
g_cuda = torch.Generator(device='cuda') | |
height = 512 | |
width = height | |
current_image = Image.new(mode="RGBA", size=(height, width)) | |
mask_image = np.array(current_image)[:, :, 3] | |
mask_image = Image.fromarray(255-mask_image).convert("RGB") | |
current_image = current_image.convert("RGB") | |
if (custom_init_image): | |
current_image = custom_init_image.resize( | |
(width, height), resample=Image.LANCZOS) | |
else: | |
init_images = pipe(prompt=prompts[min(k for k in prompts.keys() if k >= 0)], | |
negative_prompt=negative_prompt, | |
image=current_image, | |
guidance_scale=guidance_scale, | |
height=height, | |
width=width, | |
mask_image=mask_image, | |
num_inference_steps=num_inference_steps)[0] | |
current_image = init_images[0] | |
mask_width = 128 | |
num_interpol_frames = 30 | |
all_frames = [] | |
all_frames.append(current_image) | |
for i in range(num_outpainting_steps): | |
print('Outpaint step: ' + str(i+1) + | |
' / ' + str(num_outpainting_steps)) | |
prev_image_fix = current_image | |
prev_image = shrink_and_paste_on_blank(current_image, mask_width) | |
current_image = prev_image | |
# create mask (black image with white mask_width width edges) | |
mask_image = np.array(current_image)[:, :, 3] | |
mask_image = Image.fromarray(255-mask_image).convert("RGB") | |
# inpainting step | |
current_image = current_image.convert("RGB") | |
images = pipe(prompt=prompts[max(k for k in prompts.keys() if k <= i)], | |
negative_prompt=negative_prompt, | |
image=current_image, | |
guidance_scale=guidance_scale, | |
height=height, | |
width=width, | |
# generator = g_cuda.manual_seed(seed), | |
mask_image=mask_image, | |
num_inference_steps=num_inference_steps)[0] | |
current_image = images[0] | |
current_image.paste(prev_image, mask=prev_image) | |
# interpolation steps bewteen 2 inpainted images (=sequential zoom and crop) | |
for j in range(num_interpol_frames - 1): | |
interpol_image = current_image | |
interpol_width = round( | |
(1 - (1-2*mask_width/height)**(1-(j+1)/num_interpol_frames))*height/2 | |
) | |
interpol_image = interpol_image.crop((interpol_width, | |
interpol_width, | |
width - interpol_width, | |
height - interpol_width)) | |
interpol_image = interpol_image.resize((height, width)) | |
# paste the higher resolution previous image in the middle to avoid drop in quality caused by zooming | |
interpol_width2 = round( | |
(1 - (height-2*mask_width) / (height-2*interpol_width)) / 2*height | |
) | |
prev_image_fix_crop = shrink_and_paste_on_blank( | |
prev_image_fix, interpol_width2) | |
interpol_image.paste(prev_image_fix_crop, mask=prev_image_fix_crop) | |
all_frames.append(interpol_image) | |
all_frames.append(current_image) | |
interpol_image.show() | |
video_file_name = "infinite_zoom_" + str(time.time()) | |
fps = 30 | |
save_path = video_file_name + ".mp4" | |
start_frame_dupe_amount = 15 | |
last_frame_dupe_amount = 15 | |
write_video(save_path, all_frames, fps, False, | |
start_frame_dupe_amount, last_frame_dupe_amount) | |
return save_path | |
def zoom_app(): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
outpaint_prompts = gr.Dataframe( | |
type="array", | |
headers=["outpaint steps", "prompt"], | |
datatype=["number", "str"], | |
row_count=1, | |
col_count=(2, "fixed"), | |
value=[[0, default_prompt]], | |
wrap=True | |
) | |
outpaint_negative_prompt = gr.Textbox( | |
lines=1, | |
value=default_negative_prompt, | |
label='Negative Prompt' | |
) | |
outpaint_steps = gr.Slider( | |
minimum=5, | |
maximum=25, | |
step=1, | |
value=12, | |
label='Total Outpaint Steps' | |
) | |
with gr.Accordion("Advanced Options", open=False): | |
model_id = gr.Dropdown( | |
choices=inpaint_model_list, | |
value=inpaint_model_list[0], | |
label='Pre-trained Model ID' | |
) | |
guidance_scale = gr.Slider( | |
minimum=0.1, | |
maximum=15, | |
step=0.1, | |
value=7, | |
label='Guidance Scale' | |
) | |
sampling_step = gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
label='Sampling Steps for each outpaint' | |
) | |
init_image = gr.Image(type="pil",label="custom initial image") | |
generate_btn = gr.Button(value='Generate video') | |
with gr.Column(): | |
output_image = gr.Video(label='Output', format="mp4").style( | |
width=512, height=512) | |
generate_btn.click( | |
fn=zoom, | |
inputs=[ | |
model_id, | |
outpaint_prompts, | |
outpaint_negative_prompt, | |
outpaint_steps, | |
guidance_scale, | |
sampling_step, | |
init_image | |
], | |
outputs=output_image, | |
) | |
import gradio as gr | |
app = gr.Blocks() | |
with app: | |
gr.HTML( | |
""" | |
<h2 style='text-align: center'> | |
<a href="https://github.com/v8hid/infinite-zoom-stable-diffusion/" style="display:inline-block;"> | |
<img src="https://img.shields.io/static/v1?label=github&message=repository&color=blue&style=for-the-badge&logo=github&logoColor=white" alt="build status"> | |
</a> | |
<br> | |
Text to Video - Infinite zoom effect | |
</h2> | |
""" | |
) | |
zoom_app() | |
app.launch(debug=True,enable_queue=True) | |