Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
#for learning
|
2 |
import os
|
3 |
-
|
4 |
import gradio as gr
|
5 |
|
6 |
-
|
7 |
-
HF_Token = os.environ.get('HF_Token')
|
8 |
Data_Read = os.environ.get('Data_Reader')
|
9 |
ChurnData = os.environ.get('Churn_Data')
|
10 |
ChurnData2 = os.environ.get('Churn_Data2')
|
@@ -12,47 +12,6 @@ ChurnData2 = os.environ.get('Churn_Data2')
|
|
12 |
#read data
|
13 |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, SummaryIndex, download_loader
|
14 |
|
15 |
-
#new
|
16 |
-
from huggingface_hub import login
|
17 |
-
import json
|
18 |
-
login(token=HF_Token)
|
19 |
-
|
20 |
-
repo_id = "microsoft/Phi-3-mini-4k-instruct"
|
21 |
-
|
22 |
-
llm_client = inferenceClient(
|
23 |
-
model = repo_id,
|
24 |
-
timeout = 120,
|
25 |
-
)
|
26 |
-
|
27 |
-
def reply(inference_client: InferenceClient, prompt: str):
|
28 |
-
response = inference_client.post(
|
29 |
-
json={
|
30 |
-
"inputs":prompt,
|
31 |
-
"parameters":{"max_new_tokens":200},
|
32 |
-
"tasks":"text-generation",
|
33 |
-
},
|
34 |
-
)
|
35 |
-
answer = json.loads(response.decode())[0]["generated_text"]
|
36 |
-
return answer
|
37 |
-
|
38 |
-
#from llama_index.llms.ollama import Ollama
|
39 |
-
#from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
40 |
-
#from llama_index.core import Settings
|
41 |
-
|
42 |
-
#Settings.llm = Ollama(model="distilbert", request_timeout=120.0)
|
43 |
-
#Settings.embed_model = HuggingFaceEmbedding(
|
44 |
-
# model_name="distilbert/distilgpt2"
|
45 |
-
##model_name="meta-llama/Llama-2-7b-chat-hf"
|
46 |
-
#)
|
47 |
-
|
48 |
-
#from transformers import pipeline
|
49 |
-
#pipe = pipeline("text-generation", model="distilbert/distilgpt2")
|
50 |
-
#from transformers import AutoTokenizer, AutoModelForCausalLM
|
51 |
-
#tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2")
|
52 |
-
#model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
|
53 |
-
|
54 |
-
#new
|
55 |
-
|
56 |
DataReader = download_loader(Data_Read)
|
57 |
loader = DataReader()
|
58 |
|
@@ -69,9 +28,9 @@ documents = documents + documents2
|
|
69 |
index = VectorStoreIndex.from_documents(documents)
|
70 |
query_engine = index.as_query_engine()
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
Conversing = gr.ChatInterface(reply, chatbot=gr.Chatbot(height="70vh"), retry_btn=None,theme=gr.themes.Monochrome(),
|
77 |
title = 'BT Accor Q&A', undo_btn = None, clear_btn = None, css='footer {visibility: hidden}').launch()
|
|
|
1 |
#for learning
|
2 |
import os
|
3 |
+
import openai
|
4 |
import gradio as gr
|
5 |
|
6 |
+
openai.api_key = os.environ.get('O_APIKey')
|
7 |
+
#HF_Token = os.environ.get('HF_Token')
|
8 |
Data_Read = os.environ.get('Data_Reader')
|
9 |
ChurnData = os.environ.get('Churn_Data')
|
10 |
ChurnData2 = os.environ.get('Churn_Data2')
|
|
|
12 |
#read data
|
13 |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, SummaryIndex, download_loader
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
DataReader = download_loader(Data_Read)
|
16 |
loader = DataReader()
|
17 |
|
|
|
28 |
index = VectorStoreIndex.from_documents(documents)
|
29 |
query_engine = index.as_query_engine()
|
30 |
|
31 |
+
def reply(message, history):
|
32 |
+
answer = str(query_engine.query(message))
|
33 |
+
return answer
|
34 |
|
35 |
Conversing = gr.ChatInterface(reply, chatbot=gr.Chatbot(height="70vh"), retry_btn=None,theme=gr.themes.Monochrome(),
|
36 |
title = 'BT Accor Q&A', undo_btn = None, clear_btn = None, css='footer {visibility: hidden}').launch()
|