File size: 46,464 Bytes
8437908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
# TODO: Merge this with the webui_app and make it a single app

import json
import logging
import mimetypes
import os
import shutil

import uuid
from datetime import datetime
from pathlib import Path
from typing import Iterator, Optional, Sequence, Union

from fastapi import Depends, FastAPI, File, Form, HTTPException, UploadFile, status
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import tiktoken


from open_webui.storage.provider import Storage
from open_webui.apps.webui.models.knowledge import Knowledges
from open_webui.apps.retrieval.vector.connector import VECTOR_DB_CLIENT

# Document loaders
from open_webui.apps.retrieval.loaders.main import Loader

# Web search engines
from open_webui.apps.retrieval.web.main import SearchResult
from open_webui.apps.retrieval.web.utils import get_web_loader
from open_webui.apps.retrieval.web.brave import search_brave
from open_webui.apps.retrieval.web.duckduckgo import search_duckduckgo
from open_webui.apps.retrieval.web.google_pse import search_google_pse
from open_webui.apps.retrieval.web.jina_search import search_jina
from open_webui.apps.retrieval.web.searchapi import search_searchapi
from open_webui.apps.retrieval.web.searxng import search_searxng
from open_webui.apps.retrieval.web.serper import search_serper
from open_webui.apps.retrieval.web.serply import search_serply
from open_webui.apps.retrieval.web.serpstack import search_serpstack
from open_webui.apps.retrieval.web.tavily import search_tavily


from open_webui.apps.retrieval.utils import (
    get_embedding_function,
    get_model_path,
    query_collection,
    query_collection_with_hybrid_search,
    query_doc,
    query_doc_with_hybrid_search,
)

from open_webui.apps.webui.models.files import Files
from open_webui.config import (
    BRAVE_SEARCH_API_KEY,
    TIKTOKEN_ENCODING_NAME,
    RAG_TEXT_SPLITTER,
    CHUNK_OVERLAP,
    CHUNK_SIZE,
    CONTENT_EXTRACTION_ENGINE,
    CORS_ALLOW_ORIGIN,
    ENABLE_RAG_HYBRID_SEARCH,
    ENABLE_RAG_LOCAL_WEB_FETCH,
    ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
    ENABLE_RAG_WEB_SEARCH,
    ENV,
    GOOGLE_PSE_API_KEY,
    GOOGLE_PSE_ENGINE_ID,
    PDF_EXTRACT_IMAGES,
    RAG_EMBEDDING_ENGINE,
    RAG_EMBEDDING_MODEL,
    RAG_EMBEDDING_MODEL_AUTO_UPDATE,
    RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
    RAG_EMBEDDING_BATCH_SIZE,
    RAG_FILE_MAX_COUNT,
    RAG_FILE_MAX_SIZE,
    RAG_OPENAI_API_BASE_URL,
    RAG_OPENAI_API_KEY,
    RAG_RELEVANCE_THRESHOLD,
    RAG_RERANKING_MODEL,
    RAG_RERANKING_MODEL_AUTO_UPDATE,
    RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
    DEFAULT_RAG_TEMPLATE,
    RAG_TEMPLATE,
    RAG_TOP_K,
    RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
    RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
    RAG_WEB_SEARCH_ENGINE,
    RAG_WEB_SEARCH_RESULT_COUNT,
    SEARCHAPI_API_KEY,
    SEARCHAPI_ENGINE,
    SEARXNG_QUERY_URL,
    SERPER_API_KEY,
    SERPLY_API_KEY,
    SERPSTACK_API_KEY,
    SERPSTACK_HTTPS,
    TAVILY_API_KEY,
    TIKA_SERVER_URL,
    UPLOAD_DIR,
    YOUTUBE_LOADER_LANGUAGE,
    AppConfig,
)
from open_webui.constants import ERROR_MESSAGES
from open_webui.env import SRC_LOG_LEVELS, DEVICE_TYPE, DOCKER
from open_webui.utils.misc import (
    calculate_sha256,
    calculate_sha256_string,
    extract_folders_after_data_docs,
    sanitize_filename,
)
from open_webui.utils.utils import get_admin_user, get_verified_user

from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter
from langchain_community.document_loaders import (
    YoutubeLoader,
)
from langchain_core.documents import Document


log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])

app = FastAPI(docs_url="/docs" if ENV == "dev" else None, openapi_url="/openapi.json" if ENV == "dev" else None, redoc_url=None)

app.state.config = AppConfig()

app.state.config.TOP_K = RAG_TOP_K
app.state.config.RELEVANCE_THRESHOLD = RAG_RELEVANCE_THRESHOLD
app.state.config.FILE_MAX_SIZE = RAG_FILE_MAX_SIZE
app.state.config.FILE_MAX_COUNT = RAG_FILE_MAX_COUNT

app.state.config.ENABLE_RAG_HYBRID_SEARCH = ENABLE_RAG_HYBRID_SEARCH
app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = (
    ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION
)

app.state.config.CONTENT_EXTRACTION_ENGINE = CONTENT_EXTRACTION_ENGINE
app.state.config.TIKA_SERVER_URL = TIKA_SERVER_URL

app.state.config.TEXT_SPLITTER = RAG_TEXT_SPLITTER
app.state.config.TIKTOKEN_ENCODING_NAME = TIKTOKEN_ENCODING_NAME

app.state.config.CHUNK_SIZE = CHUNK_SIZE
app.state.config.CHUNK_OVERLAP = CHUNK_OVERLAP

app.state.config.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE
app.state.config.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL
app.state.config.RAG_EMBEDDING_BATCH_SIZE = RAG_EMBEDDING_BATCH_SIZE
app.state.config.RAG_RERANKING_MODEL = RAG_RERANKING_MODEL
app.state.config.RAG_TEMPLATE = RAG_TEMPLATE

app.state.config.OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL
app.state.config.OPENAI_API_KEY = RAG_OPENAI_API_KEY

app.state.config.PDF_EXTRACT_IMAGES = PDF_EXTRACT_IMAGES

app.state.config.YOUTUBE_LOADER_LANGUAGE = YOUTUBE_LOADER_LANGUAGE
app.state.YOUTUBE_LOADER_TRANSLATION = None


app.state.config.ENABLE_RAG_WEB_SEARCH = ENABLE_RAG_WEB_SEARCH
app.state.config.RAG_WEB_SEARCH_ENGINE = RAG_WEB_SEARCH_ENGINE
app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST = RAG_WEB_SEARCH_DOMAIN_FILTER_LIST

app.state.config.SEARXNG_QUERY_URL = SEARXNG_QUERY_URL
app.state.config.GOOGLE_PSE_API_KEY = GOOGLE_PSE_API_KEY
app.state.config.GOOGLE_PSE_ENGINE_ID = GOOGLE_PSE_ENGINE_ID
app.state.config.BRAVE_SEARCH_API_KEY = BRAVE_SEARCH_API_KEY
app.state.config.SERPSTACK_API_KEY = SERPSTACK_API_KEY
app.state.config.SERPSTACK_HTTPS = SERPSTACK_HTTPS
app.state.config.SERPER_API_KEY = SERPER_API_KEY
app.state.config.SERPLY_API_KEY = SERPLY_API_KEY
app.state.config.TAVILY_API_KEY = TAVILY_API_KEY
app.state.config.SEARCHAPI_API_KEY = SEARCHAPI_API_KEY
app.state.config.SEARCHAPI_ENGINE = SEARCHAPI_ENGINE
app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = RAG_WEB_SEARCH_RESULT_COUNT
app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = RAG_WEB_SEARCH_CONCURRENT_REQUESTS


def update_embedding_model(
    embedding_model: str,
    auto_update: bool = False,
):
    if embedding_model and app.state.config.RAG_EMBEDDING_ENGINE == "":
        from sentence_transformers import SentenceTransformer

        app.state.sentence_transformer_ef = SentenceTransformer(
            get_model_path(embedding_model, auto_update),
            device=DEVICE_TYPE,
            trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
        )
    else:
        app.state.sentence_transformer_ef = None


def update_reranking_model(
    reranking_model: str,
    auto_update: bool = False,
):
    if reranking_model:
        if any(model in reranking_model for model in ["jinaai/jina-colbert-v2"]):
            try:
                from open_webui.apps.retrieval.models.colbert import ColBERT

                app.state.sentence_transformer_rf = ColBERT(
                    get_model_path(reranking_model, auto_update),
                    env="docker" if DOCKER else None,
                )
            except Exception as e:
                log.error(f"ColBERT: {e}")
                app.state.sentence_transformer_rf = None
                app.state.config.ENABLE_RAG_HYBRID_SEARCH = False
        else:
            import sentence_transformers

            try:
                app.state.sentence_transformer_rf = sentence_transformers.CrossEncoder(
                    get_model_path(reranking_model, auto_update),
                    device=DEVICE_TYPE,
                    trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
                )
            except:
                log.error("CrossEncoder error")
                app.state.sentence_transformer_rf = None
                app.state.config.ENABLE_RAG_HYBRID_SEARCH = False
    else:
        app.state.sentence_transformer_rf = None


update_embedding_model(
    app.state.config.RAG_EMBEDDING_MODEL,
    RAG_EMBEDDING_MODEL_AUTO_UPDATE,
)

update_reranking_model(
    app.state.config.RAG_RERANKING_MODEL,
    RAG_RERANKING_MODEL_AUTO_UPDATE,
)


app.state.EMBEDDING_FUNCTION = get_embedding_function(
    app.state.config.RAG_EMBEDDING_ENGINE,
    app.state.config.RAG_EMBEDDING_MODEL,
    app.state.sentence_transformer_ef,
    app.state.config.OPENAI_API_KEY,
    app.state.config.OPENAI_API_BASE_URL,
    app.state.config.RAG_EMBEDDING_BATCH_SIZE,
)

app.add_middleware(
    CORSMiddleware,
    allow_origins=CORS_ALLOW_ORIGIN,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


class CollectionNameForm(BaseModel):
    collection_name: Optional[str] = None


class ProcessUrlForm(CollectionNameForm):
    url: str


class SearchForm(CollectionNameForm):
    query: str


@app.get("/")
async def get_status():
    return {
        "status": True,
        "chunk_size": app.state.config.CHUNK_SIZE,
        "chunk_overlap": app.state.config.CHUNK_OVERLAP,
        "template": app.state.config.RAG_TEMPLATE,
        "embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE,
        "embedding_model": app.state.config.RAG_EMBEDDING_MODEL,
        "reranking_model": app.state.config.RAG_RERANKING_MODEL,
        "embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE,
    }


@app.get("/embedding")
async def get_embedding_config(user=Depends(get_admin_user)):
    return {
        "status": True,
        "embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE,
        "embedding_model": app.state.config.RAG_EMBEDDING_MODEL,
        "embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE,
        "openai_config": {
            "url": app.state.config.OPENAI_API_BASE_URL,
            "key": app.state.config.OPENAI_API_KEY,
        },
    }


@app.get("/reranking")
async def get_reraanking_config(user=Depends(get_admin_user)):
    return {
        "status": True,
        "reranking_model": app.state.config.RAG_RERANKING_MODEL,
    }


class OpenAIConfigForm(BaseModel):
    url: str
    key: str


class EmbeddingModelUpdateForm(BaseModel):
    openai_config: Optional[OpenAIConfigForm] = None
    embedding_engine: str
    embedding_model: str
    embedding_batch_size: Optional[int] = 1


@app.post("/embedding/update")
async def update_embedding_config(
    form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user)
):
    log.info(
        f"Updating embedding model: {app.state.config.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}"
    )
    try:
        app.state.config.RAG_EMBEDDING_ENGINE = form_data.embedding_engine
        app.state.config.RAG_EMBEDDING_MODEL = form_data.embedding_model

        if app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]:
            if form_data.openai_config is not None:
                app.state.config.OPENAI_API_BASE_URL = form_data.openai_config.url
                app.state.config.OPENAI_API_KEY = form_data.openai_config.key
            app.state.config.RAG_EMBEDDING_BATCH_SIZE = form_data.embedding_batch_size

        update_embedding_model(app.state.config.RAG_EMBEDDING_MODEL)

        app.state.EMBEDDING_FUNCTION = get_embedding_function(
            app.state.config.RAG_EMBEDDING_ENGINE,
            app.state.config.RAG_EMBEDDING_MODEL,
            app.state.sentence_transformer_ef,
            app.state.config.OPENAI_API_KEY,
            app.state.config.OPENAI_API_BASE_URL,
            app.state.config.RAG_EMBEDDING_BATCH_SIZE,
        )

        return {
            "status": True,
            "embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE,
            "embedding_model": app.state.config.RAG_EMBEDDING_MODEL,
            "embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE,
            "openai_config": {
                "url": app.state.config.OPENAI_API_BASE_URL,
                "key": app.state.config.OPENAI_API_KEY,
            },
        }
    except Exception as e:
        log.exception(f"Problem updating embedding model: {e}")
        raise HTTPException(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
            detail=ERROR_MESSAGES.DEFAULT(e),
        )


class RerankingModelUpdateForm(BaseModel):
    reranking_model: str


@app.post("/reranking/update")
async def update_reranking_config(
    form_data: RerankingModelUpdateForm, user=Depends(get_admin_user)
):
    log.info(
        f"Updating reranking model: {app.state.config.RAG_RERANKING_MODEL} to {form_data.reranking_model}"
    )
    try:
        app.state.config.RAG_RERANKING_MODEL = form_data.reranking_model

        update_reranking_model(app.state.config.RAG_RERANKING_MODEL, True)

        return {
            "status": True,
            "reranking_model": app.state.config.RAG_RERANKING_MODEL,
        }
    except Exception as e:
        log.exception(f"Problem updating reranking model: {e}")
        raise HTTPException(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
            detail=ERROR_MESSAGES.DEFAULT(e),
        )


@app.get("/config")
async def get_rag_config(user=Depends(get_admin_user)):
    return {
        "status": True,
        "pdf_extract_images": app.state.config.PDF_EXTRACT_IMAGES,
        "content_extraction": {
            "engine": app.state.config.CONTENT_EXTRACTION_ENGINE,
            "tika_server_url": app.state.config.TIKA_SERVER_URL,
        },
        "chunk": {
            "text_splitter": app.state.config.TEXT_SPLITTER,
            "chunk_size": app.state.config.CHUNK_SIZE,
            "chunk_overlap": app.state.config.CHUNK_OVERLAP,
        },
        "file": {
            "max_size": app.state.config.FILE_MAX_SIZE,
            "max_count": app.state.config.FILE_MAX_COUNT,
        },
        "youtube": {
            "language": app.state.config.YOUTUBE_LOADER_LANGUAGE,
            "translation": app.state.YOUTUBE_LOADER_TRANSLATION,
        },
        "web": {
            "ssl_verification": app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
            "search": {
                "enabled": app.state.config.ENABLE_RAG_WEB_SEARCH,
                "engine": app.state.config.RAG_WEB_SEARCH_ENGINE,
                "searxng_query_url": app.state.config.SEARXNG_QUERY_URL,
                "google_pse_api_key": app.state.config.GOOGLE_PSE_API_KEY,
                "google_pse_engine_id": app.state.config.GOOGLE_PSE_ENGINE_ID,
                "brave_search_api_key": app.state.config.BRAVE_SEARCH_API_KEY,
                "serpstack_api_key": app.state.config.SERPSTACK_API_KEY,
                "serpstack_https": app.state.config.SERPSTACK_HTTPS,
                "serper_api_key": app.state.config.SERPER_API_KEY,
                "serply_api_key": app.state.config.SERPLY_API_KEY,
                "tavily_api_key": app.state.config.TAVILY_API_KEY,
                "searchapi_api_key": app.state.config.SEARCHAPI_API_KEY,
                "seaarchapi_engine": app.state.config.SEARCHAPI_ENGINE,
                "result_count": app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
                "concurrent_requests": app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
            },
        },
    }


class FileConfig(BaseModel):
    max_size: Optional[int] = None
    max_count: Optional[int] = None


class ContentExtractionConfig(BaseModel):
    engine: str = ""
    tika_server_url: Optional[str] = None


class ChunkParamUpdateForm(BaseModel):
    text_splitter: Optional[str] = None
    chunk_size: int
    chunk_overlap: int


class YoutubeLoaderConfig(BaseModel):
    language: list[str]
    translation: Optional[str] = None


class WebSearchConfig(BaseModel):
    enabled: bool
    engine: Optional[str] = None
    searxng_query_url: Optional[str] = None
    google_pse_api_key: Optional[str] = None
    google_pse_engine_id: Optional[str] = None
    brave_search_api_key: Optional[str] = None
    serpstack_api_key: Optional[str] = None
    serpstack_https: Optional[bool] = None
    serper_api_key: Optional[str] = None
    serply_api_key: Optional[str] = None
    tavily_api_key: Optional[str] = None
    searchapi_api_key: Optional[str] = None
    searchapi_engine: Optional[str] = None
    result_count: Optional[int] = None
    concurrent_requests: Optional[int] = None


class WebConfig(BaseModel):
    search: WebSearchConfig
    web_loader_ssl_verification: Optional[bool] = None


class ConfigUpdateForm(BaseModel):
    pdf_extract_images: Optional[bool] = None
    file: Optional[FileConfig] = None
    content_extraction: Optional[ContentExtractionConfig] = None
    chunk: Optional[ChunkParamUpdateForm] = None
    youtube: Optional[YoutubeLoaderConfig] = None
    web: Optional[WebConfig] = None


@app.post("/config/update")
async def update_rag_config(form_data: ConfigUpdateForm, user=Depends(get_admin_user)):
    app.state.config.PDF_EXTRACT_IMAGES = (
        form_data.pdf_extract_images
        if form_data.pdf_extract_images is not None
        else app.state.config.PDF_EXTRACT_IMAGES
    )

    if form_data.file is not None:
        app.state.config.FILE_MAX_SIZE = form_data.file.max_size
        app.state.config.FILE_MAX_COUNT = form_data.file.max_count

    if form_data.content_extraction is not None:
        log.info(f"Updating text settings: {form_data.content_extraction}")
        app.state.config.CONTENT_EXTRACTION_ENGINE = form_data.content_extraction.engine
        app.state.config.TIKA_SERVER_URL = form_data.content_extraction.tika_server_url

    if form_data.chunk is not None:
        app.state.config.TEXT_SPLITTER = form_data.chunk.text_splitter
        app.state.config.CHUNK_SIZE = form_data.chunk.chunk_size
        app.state.config.CHUNK_OVERLAP = form_data.chunk.chunk_overlap

    if form_data.youtube is not None:
        app.state.config.YOUTUBE_LOADER_LANGUAGE = form_data.youtube.language
        app.state.YOUTUBE_LOADER_TRANSLATION = form_data.youtube.translation

    if form_data.web is not None:
        app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = (
            form_data.web.web_loader_ssl_verification
        )

        app.state.config.ENABLE_RAG_WEB_SEARCH = form_data.web.search.enabled
        app.state.config.RAG_WEB_SEARCH_ENGINE = form_data.web.search.engine
        app.state.config.SEARXNG_QUERY_URL = form_data.web.search.searxng_query_url
        app.state.config.GOOGLE_PSE_API_KEY = form_data.web.search.google_pse_api_key
        app.state.config.GOOGLE_PSE_ENGINE_ID = (
            form_data.web.search.google_pse_engine_id
        )
        app.state.config.BRAVE_SEARCH_API_KEY = (
            form_data.web.search.brave_search_api_key
        )
        app.state.config.SERPSTACK_API_KEY = form_data.web.search.serpstack_api_key
        app.state.config.SERPSTACK_HTTPS = form_data.web.search.serpstack_https
        app.state.config.SERPER_API_KEY = form_data.web.search.serper_api_key
        app.state.config.SERPLY_API_KEY = form_data.web.search.serply_api_key
        app.state.config.TAVILY_API_KEY = form_data.web.search.tavily_api_key
        app.state.config.SEARCHAPI_API_KEY = form_data.web.search.searchapi_api_key
        app.state.config.SEARCHAPI_ENGINE = form_data.web.search.searchapi_engine
        app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = form_data.web.search.result_count
        app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = (
            form_data.web.search.concurrent_requests
        )

    return {
        "status": True,
        "pdf_extract_images": app.state.config.PDF_EXTRACT_IMAGES,
        "file": {
            "max_size": app.state.config.FILE_MAX_SIZE,
            "max_count": app.state.config.FILE_MAX_COUNT,
        },
        "content_extraction": {
            "engine": app.state.config.CONTENT_EXTRACTION_ENGINE,
            "tika_server_url": app.state.config.TIKA_SERVER_URL,
        },
        "chunk": {
            "text_splitter": app.state.config.TEXT_SPLITTER,
            "chunk_size": app.state.config.CHUNK_SIZE,
            "chunk_overlap": app.state.config.CHUNK_OVERLAP,
        },
        "youtube": {
            "language": app.state.config.YOUTUBE_LOADER_LANGUAGE,
            "translation": app.state.YOUTUBE_LOADER_TRANSLATION,
        },
        "web": {
            "ssl_verification": app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
            "search": {
                "enabled": app.state.config.ENABLE_RAG_WEB_SEARCH,
                "engine": app.state.config.RAG_WEB_SEARCH_ENGINE,
                "searxng_query_url": app.state.config.SEARXNG_QUERY_URL,
                "google_pse_api_key": app.state.config.GOOGLE_PSE_API_KEY,
                "google_pse_engine_id": app.state.config.GOOGLE_PSE_ENGINE_ID,
                "brave_search_api_key": app.state.config.BRAVE_SEARCH_API_KEY,
                "serpstack_api_key": app.state.config.SERPSTACK_API_KEY,
                "serpstack_https": app.state.config.SERPSTACK_HTTPS,
                "serper_api_key": app.state.config.SERPER_API_KEY,
                "serply_api_key": app.state.config.SERPLY_API_KEY,
                "serachapi_api_key": app.state.config.SEARCHAPI_API_KEY,
                "searchapi_engine": app.state.config.SEARCHAPI_ENGINE,
                "tavily_api_key": app.state.config.TAVILY_API_KEY,
                "result_count": app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
                "concurrent_requests": app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
            },
        },
    }


@app.get("/template")
async def get_rag_template(user=Depends(get_verified_user)):
    return {
        "status": True,
        "template": app.state.config.RAG_TEMPLATE,
    }


@app.get("/query/settings")
async def get_query_settings(user=Depends(get_admin_user)):
    return {
        "status": True,
        "template": app.state.config.RAG_TEMPLATE,
        "k": app.state.config.TOP_K,
        "r": app.state.config.RELEVANCE_THRESHOLD,
        "hybrid": app.state.config.ENABLE_RAG_HYBRID_SEARCH,
    }


class QuerySettingsForm(BaseModel):
    k: Optional[int] = None
    r: Optional[float] = None
    template: Optional[str] = None
    hybrid: Optional[bool] = None


@app.post("/query/settings/update")
async def update_query_settings(
    form_data: QuerySettingsForm, user=Depends(get_admin_user)
):
    app.state.config.RAG_TEMPLATE = form_data.template
    app.state.config.TOP_K = form_data.k if form_data.k else 4
    app.state.config.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0

    app.state.config.ENABLE_RAG_HYBRID_SEARCH = (
        form_data.hybrid if form_data.hybrid else False
    )

    return {
        "status": True,
        "template": app.state.config.RAG_TEMPLATE,
        "k": app.state.config.TOP_K,
        "r": app.state.config.RELEVANCE_THRESHOLD,
        "hybrid": app.state.config.ENABLE_RAG_HYBRID_SEARCH,
    }


####################################
#
# Document process and retrieval
#
####################################


def save_docs_to_vector_db(
    docs,
    collection_name,
    metadata: Optional[dict] = None,
    overwrite: bool = False,
    split: bool = True,
    add: bool = False,
) -> bool:
    log.info(f"save_docs_to_vector_db {docs} {collection_name}")

    # Check if entries with the same hash (metadata.hash) already exist
    if metadata and "hash" in metadata:
        result = VECTOR_DB_CLIENT.query(
            collection_name=collection_name,
            filter={"hash": metadata["hash"]},
        )

        if result is not None:
            existing_doc_ids = result.ids[0]
            if existing_doc_ids:
                log.info(f"Document with hash {metadata['hash']} already exists")
                raise ValueError(ERROR_MESSAGES.DUPLICATE_CONTENT)

    if split:
        if app.state.config.TEXT_SPLITTER in ["", "character"]:
            text_splitter = RecursiveCharacterTextSplitter(
                chunk_size=app.state.config.CHUNK_SIZE,
                chunk_overlap=app.state.config.CHUNK_OVERLAP,
                add_start_index=True,
            )
        elif app.state.config.TEXT_SPLITTER == "token":
            log.info(
                f"Using token text splitter: {app.state.config.TIKTOKEN_ENCODING_NAME}"
            )

            tiktoken.get_encoding(str(app.state.config.TIKTOKEN_ENCODING_NAME))
            text_splitter = TokenTextSplitter(
                encoding_name=str(app.state.config.TIKTOKEN_ENCODING_NAME),
                chunk_size=app.state.config.CHUNK_SIZE,
                chunk_overlap=app.state.config.CHUNK_OVERLAP,
                add_start_index=True,
            )
        else:
            raise ValueError(ERROR_MESSAGES.DEFAULT("Invalid text splitter"))

        docs = text_splitter.split_documents(docs)

    if len(docs) == 0:
        raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT)

    texts = [doc.page_content for doc in docs]
    metadatas = [
        {
            **doc.metadata,
            **(metadata if metadata else {}),
            "embedding_config": json.dumps(
                {
                    "engine": app.state.config.RAG_EMBEDDING_ENGINE,
                    "model": app.state.config.RAG_EMBEDDING_MODEL,
                }
            ),
        }
        for doc in docs
    ]

    # ChromaDB does not like datetime formats
    # for meta-data so convert them to string.
    for metadata in metadatas:
        for key, value in metadata.items():
            if isinstance(value, datetime):
                metadata[key] = str(value)

    try:
        if VECTOR_DB_CLIENT.has_collection(collection_name=collection_name):
            log.info(f"collection {collection_name} already exists")

            if overwrite:
                VECTOR_DB_CLIENT.delete_collection(collection_name=collection_name)
                log.info(f"deleting existing collection {collection_name}")
            elif add is False:
                log.info(
                    f"collection {collection_name} already exists, overwrite is False and add is False"
                )
                return True

        log.info(f"adding to collection {collection_name}")
        embedding_function = get_embedding_function(
            app.state.config.RAG_EMBEDDING_ENGINE,
            app.state.config.RAG_EMBEDDING_MODEL,
            app.state.sentence_transformer_ef,
            app.state.config.OPENAI_API_KEY,
            app.state.config.OPENAI_API_BASE_URL,
            app.state.config.RAG_EMBEDDING_BATCH_SIZE,
        )

        embeddings = embedding_function(
            list(map(lambda x: x.replace("\n", " "), texts))
        )

        items = [
            {
                "id": str(uuid.uuid4()),
                "text": text,
                "vector": embeddings[idx],
                "metadata": metadatas[idx],
            }
            for idx, text in enumerate(texts)
        ]

        VECTOR_DB_CLIENT.insert(
            collection_name=collection_name,
            items=items,
        )

        return True
    except Exception as e:
        log.exception(e)
        return False


class ProcessFileForm(BaseModel):
    file_id: str
    content: Optional[str] = None
    collection_name: Optional[str] = None


@app.post("/process/file")
def process_file(
    form_data: ProcessFileForm,
    user=Depends(get_verified_user),
):
    try:
        file = Files.get_file_by_id(form_data.file_id)

        collection_name = form_data.collection_name

        if collection_name is None:
            collection_name = f"file-{file.id}"

        if form_data.content:
            # Update the content in the file
            # Usage: /files/{file_id}/data/content/update

            VECTOR_DB_CLIENT.delete(
                collection_name=f"file-{file.id}",
                filter={"file_id": file.id},
            )

            docs = [
                Document(
                    page_content=form_data.content,
                    metadata={
                        "name": file.meta.get("name", file.filename),
                        "created_by": file.user_id,
                        "file_id": file.id,
                        **file.meta,
                    },
                )
            ]

            text_content = form_data.content
        elif form_data.collection_name:
            # Check if the file has already been processed and save the content
            # Usage: /knowledge/{id}/file/add, /knowledge/{id}/file/update

            result = VECTOR_DB_CLIENT.query(
                collection_name=f"file-{file.id}", filter={"file_id": file.id}
            )

            if result is not None and len(result.ids[0]) > 0:
                docs = [
                    Document(
                        page_content=result.documents[0][idx],
                        metadata=result.metadatas[0][idx],
                    )
                    for idx, id in enumerate(result.ids[0])
                ]
            else:
                docs = [
                    Document(
                        page_content=file.data.get("content", ""),
                        metadata={
                            "name": file.meta.get("name", file.filename),
                            "created_by": file.user_id,
                            "file_id": file.id,
                            **file.meta,
                        },
                    )
                ]

            text_content = file.data.get("content", "")
        else:
            # Process the file and save the content
            # Usage: /files/
            file_path = file.path
            if file_path:
                file_path = Storage.get_file(file_path)
                loader = Loader(
                    engine=app.state.config.CONTENT_EXTRACTION_ENGINE,
                    TIKA_SERVER_URL=app.state.config.TIKA_SERVER_URL,
                    PDF_EXTRACT_IMAGES=app.state.config.PDF_EXTRACT_IMAGES,
                )
                docs = loader.load(
                    file.filename, file.meta.get("content_type"), file_path
                )
            else:
                docs = [
                    Document(
                        page_content=file.data.get("content", ""),
                        metadata={
                            "name": file.filename,
                            "created_by": file.user_id,
                            "file_id": file.id,
                            **file.meta,
                        },
                    )
                ]
            text_content = " ".join([doc.page_content for doc in docs])

        log.debug(f"text_content: {text_content}")
        Files.update_file_data_by_id(
            file.id,
            {"content": text_content},
        )

        hash = calculate_sha256_string(text_content)
        Files.update_file_hash_by_id(file.id, hash)

        try:
            result = save_docs_to_vector_db(
                docs=docs,
                collection_name=collection_name,
                metadata={
                    "file_id": file.id,
                    "name": file.meta.get("name", file.filename),
                    "hash": hash,
                },
                add=(True if form_data.collection_name else False),
            )

            if result:
                Files.update_file_metadata_by_id(
                    file.id,
                    {
                        "collection_name": collection_name,
                    },
                )

                return {
                    "status": True,
                    "collection_name": collection_name,
                    "filename": file.meta.get("name", file.filename),
                    "content": text_content,
                }
        except Exception as e:
            raise e
    except Exception as e:
        log.exception(e)
        if "No pandoc was found" in str(e):
            raise HTTPException(
                status_code=status.HTTP_400_BAD_REQUEST,
                detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
            )
        else:
            raise HTTPException(
                status_code=status.HTTP_400_BAD_REQUEST,
                detail=str(e),
            )


class ProcessTextForm(BaseModel):
    name: str
    content: str
    collection_name: Optional[str] = None


@app.post("/process/text")
def process_text(
    form_data: ProcessTextForm,
    user=Depends(get_verified_user),
):
    collection_name = form_data.collection_name
    if collection_name is None:
        collection_name = calculate_sha256_string(form_data.content)

    docs = [
        Document(
            page_content=form_data.content,
            metadata={"name": form_data.name, "created_by": user.id},
        )
    ]
    text_content = form_data.content
    log.debug(f"text_content: {text_content}")

    result = save_docs_to_vector_db(docs, collection_name)

    if result:
        return {
            "status": True,
            "collection_name": collection_name,
            "content": text_content,
        }
    else:
        raise HTTPException(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
            detail=ERROR_MESSAGES.DEFAULT(),
        )


@app.post("/process/youtube")
def process_youtube_video(form_data: ProcessUrlForm, user=Depends(get_verified_user)):
    try:
        collection_name = form_data.collection_name
        if not collection_name:
            collection_name = calculate_sha256_string(form_data.url)[:63]

        loader = YoutubeLoader.from_youtube_url(
            form_data.url,
            add_video_info=True,
            language=app.state.config.YOUTUBE_LOADER_LANGUAGE,
            translation=app.state.YOUTUBE_LOADER_TRANSLATION,
        )
        docs = loader.load()
        content = " ".join([doc.page_content for doc in docs])
        log.debug(f"text_content: {content}")
        save_docs_to_vector_db(docs, collection_name, overwrite=True)

        return {
            "status": True,
            "collection_name": collection_name,
            "filename": form_data.url,
            "file": {
                "data": {
                    "content": content,
                },
                "meta": {
                    "name": form_data.url,
                },
            },
        }
    except Exception as e:
        log.exception(e)
        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST,
            detail=ERROR_MESSAGES.DEFAULT(e),
        )


@app.post("/process/web")
def process_web(form_data: ProcessUrlForm, user=Depends(get_verified_user)):
    try:
        collection_name = form_data.collection_name
        if not collection_name:
            collection_name = calculate_sha256_string(form_data.url)[:63]

        loader = get_web_loader(
            form_data.url,
            verify_ssl=app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
            requests_per_second=app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
        )
        docs = loader.load()
        content = " ".join([doc.page_content for doc in docs])
        log.debug(f"text_content: {content}")
        save_docs_to_vector_db(docs, collection_name, overwrite=True)

        return {
            "status": True,
            "collection_name": collection_name,
            "filename": form_data.url,
            "file": {
                "data": {
                    "content": content,
                },
                "meta": {
                    "name": form_data.url,
                },
            },
        }
    except Exception as e:
        log.exception(e)
        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST,
            detail=ERROR_MESSAGES.DEFAULT(e),
        )


def search_web(engine: str, query: str) -> list[SearchResult]:
    """Search the web using a search engine and return the results as a list of SearchResult objects.
    Will look for a search engine API key in environment variables in the following order:
    - SEARXNG_QUERY_URL
    - GOOGLE_PSE_API_KEY + GOOGLE_PSE_ENGINE_ID
    - BRAVE_SEARCH_API_KEY
    - SERPSTACK_API_KEY
    - SERPER_API_KEY
    - SERPLY_API_KEY
    - TAVILY_API_KEY
    - SEARCHAPI_API_KEY + SEARCHAPI_ENGINE (by default `google`)
    Args:
        query (str): The query to search for
    """

    # TODO: add playwright to search the web
    if engine == "searxng":
        if app.state.config.SEARXNG_QUERY_URL:
            return search_searxng(
                app.state.config.SEARXNG_QUERY_URL,
                query,
                app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
                app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
            )
        else:
            raise Exception("No SEARXNG_QUERY_URL found in environment variables")
    elif engine == "google_pse":
        if (
            app.state.config.GOOGLE_PSE_API_KEY
            and app.state.config.GOOGLE_PSE_ENGINE_ID
        ):
            return search_google_pse(
                app.state.config.GOOGLE_PSE_API_KEY,
                app.state.config.GOOGLE_PSE_ENGINE_ID,
                query,
                app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
                app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
            )
        else:
            raise Exception(
                "No GOOGLE_PSE_API_KEY or GOOGLE_PSE_ENGINE_ID found in environment variables"
            )
    elif engine == "brave":
        if app.state.config.BRAVE_SEARCH_API_KEY:
            return search_brave(
                app.state.config.BRAVE_SEARCH_API_KEY,
                query,
                app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
                app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
            )
        else:
            raise Exception("No BRAVE_SEARCH_API_KEY found in environment variables")
    elif engine == "serpstack":
        if app.state.config.SERPSTACK_API_KEY:
            return search_serpstack(
                app.state.config.SERPSTACK_API_KEY,
                query,
                app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
                app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
                https_enabled=app.state.config.SERPSTACK_HTTPS,
            )
        else:
            raise Exception("No SERPSTACK_API_KEY found in environment variables")
    elif engine == "serper":
        if app.state.config.SERPER_API_KEY:
            return search_serper(
                app.state.config.SERPER_API_KEY,
                query,
                app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
                app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
            )
        else:
            raise Exception("No SERPER_API_KEY found in environment variables")
    elif engine == "serply":
        if app.state.config.SERPLY_API_KEY:
            return search_serply(
                app.state.config.SERPLY_API_KEY,
                query,
                app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
                app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
            )
        else:
            raise Exception("No SERPLY_API_KEY found in environment variables")
    elif engine == "duckduckgo":
        return search_duckduckgo(
            query,
            app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
            app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
        )
    elif engine == "tavily":
        if app.state.config.TAVILY_API_KEY:
            return search_tavily(
                app.state.config.TAVILY_API_KEY,
                query,
                app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
            )
        else:
            raise Exception("No TAVILY_API_KEY found in environment variables")
    elif engine == "searchapi":
        if app.state.config.SEARCHAPI_API_KEY:
            return search_searchapi(
                app.state.config.SEARCHAPI_API_KEY,
                app.state.config.SEARCHAPI_ENGINE,
                query,
                app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
                app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
            )
        else:
            raise Exception("No SEARCHAPI_API_KEY found in environment variables")
    elif engine == "jina":
        return search_jina(query, app.state.config.RAG_WEB_SEARCH_RESULT_COUNT)
    else:
        raise Exception("No search engine API key found in environment variables")


@app.post("/process/web/search")
def process_web_search(form_data: SearchForm, user=Depends(get_verified_user)):
    try:
        logging.info(
            f"trying to web search with {app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query}"
        )
        web_results = search_web(
            app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query
        )
    except Exception as e:
        log.exception(e)

        print(e)
        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST,
            detail=ERROR_MESSAGES.WEB_SEARCH_ERROR(e),
        )

    try:
        collection_name = form_data.collection_name
        if collection_name == "":
            collection_name = calculate_sha256_string(form_data.query)[:63]

        urls = [result.link for result in web_results]

        loader = get_web_loader(urls)
        docs = loader.load()

        save_docs_to_vector_db(docs, collection_name, overwrite=True)

        return {
            "status": True,
            "collection_name": collection_name,
            "filenames": urls,
        }
    except Exception as e:
        log.exception(e)
        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST,
            detail=ERROR_MESSAGES.DEFAULT(e),
        )


class QueryDocForm(BaseModel):
    collection_name: str
    query: str
    k: Optional[int] = None
    r: Optional[float] = None
    hybrid: Optional[bool] = None


@app.post("/query/doc")
def query_doc_handler(
    form_data: QueryDocForm,
    user=Depends(get_verified_user),
):
    try:
        if app.state.config.ENABLE_RAG_HYBRID_SEARCH:
            return query_doc_with_hybrid_search(
                collection_name=form_data.collection_name,
                query=form_data.query,
                embedding_function=app.state.EMBEDDING_FUNCTION,
                k=form_data.k if form_data.k else app.state.config.TOP_K,
                reranking_function=app.state.sentence_transformer_rf,
                r=(
                    form_data.r if form_data.r else app.state.config.RELEVANCE_THRESHOLD
                ),
            )
        else:
            return query_doc(
                collection_name=form_data.collection_name,
                query=form_data.query,
                embedding_function=app.state.EMBEDDING_FUNCTION,
                k=form_data.k if form_data.k else app.state.config.TOP_K,
            )
    except Exception as e:
        log.exception(e)
        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST,
            detail=ERROR_MESSAGES.DEFAULT(e),
        )


class QueryCollectionsForm(BaseModel):
    collection_names: list[str]
    query: str
    k: Optional[int] = None
    r: Optional[float] = None
    hybrid: Optional[bool] = None


@app.post("/query/collection")
def query_collection_handler(
    form_data: QueryCollectionsForm,
    user=Depends(get_verified_user),
):
    try:
        if app.state.config.ENABLE_RAG_HYBRID_SEARCH:
            return query_collection_with_hybrid_search(
                collection_names=form_data.collection_names,
                query=form_data.query,
                embedding_function=app.state.EMBEDDING_FUNCTION,
                k=form_data.k if form_data.k else app.state.config.TOP_K,
                reranking_function=app.state.sentence_transformer_rf,
                r=(
                    form_data.r if form_data.r else app.state.config.RELEVANCE_THRESHOLD
                ),
            )
        else:
            return query_collection(
                collection_names=form_data.collection_names,
                query=form_data.query,
                embedding_function=app.state.EMBEDDING_FUNCTION,
                k=form_data.k if form_data.k else app.state.config.TOP_K,
            )

    except Exception as e:
        log.exception(e)
        raise HTTPException(
            status_code=status.HTTP_400_BAD_REQUEST,
            detail=ERROR_MESSAGES.DEFAULT(e),
        )


####################################
#
# Vector DB operations
#
####################################


class DeleteForm(BaseModel):
    collection_name: str
    file_id: str


@app.post("/delete")
def delete_entries_from_collection(form_data: DeleteForm, user=Depends(get_admin_user)):
    try:
        if VECTOR_DB_CLIENT.has_collection(collection_name=form_data.collection_name):
            file = Files.get_file_by_id(form_data.file_id)
            hash = file.hash

            VECTOR_DB_CLIENT.delete(
                collection_name=form_data.collection_name,
                metadata={"hash": hash},
            )
            return {"status": True}
        else:
            return {"status": False}
    except Exception as e:
        log.exception(e)
        return {"status": False}


@app.post("/reset/db")
def reset_vector_db(user=Depends(get_admin_user)):
    VECTOR_DB_CLIENT.reset()
    Knowledges.delete_all_knowledge()


@app.post("/reset/uploads")
def reset_upload_dir(user=Depends(get_admin_user)) -> bool:
    folder = f"{UPLOAD_DIR}"
    try:
        # Check if the directory exists
        if os.path.exists(folder):
            # Iterate over all the files and directories in the specified directory
            for filename in os.listdir(folder):
                file_path = os.path.join(folder, filename)
                try:
                    if os.path.isfile(file_path) or os.path.islink(file_path):
                        os.unlink(file_path)  # Remove the file or link
                    elif os.path.isdir(file_path):
                        shutil.rmtree(file_path)  # Remove the directory
                except Exception as e:
                    print(f"Failed to delete {file_path}. Reason: {e}")
        else:
            print(f"The directory {folder} does not exist")
    except Exception as e:
        print(f"Failed to process the directory {folder}. Reason: {e}")
    return True


if ENV == "dev":

    @app.get("/ef")
    async def get_embeddings():
        return {"result": app.state.EMBEDDING_FUNCTION("hello world")}

    @app.get("/ef/{text}")
    async def get_embeddings_text(text: str):
        return {"result": app.state.EMBEDDING_FUNCTION(text)}