|
import hashlib |
|
import json |
|
import logging |
|
import os |
|
import uuid |
|
from functools import lru_cache |
|
from pathlib import Path |
|
from pydub import AudioSegment |
|
from pydub.silence import split_on_silence |
|
|
|
import requests |
|
from open_webui.config import ( |
|
AUDIO_STT_ENGINE, |
|
AUDIO_STT_MODEL, |
|
AUDIO_STT_OPENAI_API_BASE_URL, |
|
AUDIO_STT_OPENAI_API_KEY, |
|
AUDIO_TTS_API_KEY, |
|
AUDIO_TTS_ENGINE, |
|
AUDIO_TTS_MODEL, |
|
AUDIO_TTS_OPENAI_API_BASE_URL, |
|
AUDIO_TTS_OPENAI_API_KEY, |
|
AUDIO_TTS_SPLIT_ON, |
|
AUDIO_TTS_VOICE, |
|
AUDIO_TTS_AZURE_SPEECH_REGION, |
|
AUDIO_TTS_AZURE_SPEECH_OUTPUT_FORMAT, |
|
CACHE_DIR, |
|
CORS_ALLOW_ORIGIN, |
|
WHISPER_MODEL, |
|
WHISPER_MODEL_AUTO_UPDATE, |
|
WHISPER_MODEL_DIR, |
|
AppConfig, |
|
) |
|
|
|
from open_webui.constants import ERROR_MESSAGES |
|
from open_webui.env import ENV, SRC_LOG_LEVELS, DEVICE_TYPE |
|
from fastapi import Depends, FastAPI, File, HTTPException, Request, UploadFile, status |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from fastapi.responses import FileResponse |
|
from pydantic import BaseModel |
|
from open_webui.utils.utils import get_admin_user, get_verified_user |
|
|
|
|
|
MAX_FILE_SIZE_MB = 25 |
|
MAX_FILE_SIZE = MAX_FILE_SIZE_MB * 1024 * 1024 |
|
|
|
|
|
log = logging.getLogger(__name__) |
|
log.setLevel(SRC_LOG_LEVELS["AUDIO"]) |
|
|
|
app = FastAPI(docs_url="/docs" if ENV == "dev" else None, openapi_url="/openapi.json" if ENV == "dev" else None, redoc_url=None) |
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=CORS_ALLOW_ORIGIN, |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
app.state.config = AppConfig() |
|
|
|
app.state.config.STT_OPENAI_API_BASE_URL = AUDIO_STT_OPENAI_API_BASE_URL |
|
app.state.config.STT_OPENAI_API_KEY = AUDIO_STT_OPENAI_API_KEY |
|
app.state.config.STT_ENGINE = AUDIO_STT_ENGINE |
|
app.state.config.STT_MODEL = AUDIO_STT_MODEL |
|
|
|
app.state.config.WHISPER_MODEL = WHISPER_MODEL |
|
app.state.faster_whisper_model = None |
|
|
|
app.state.config.TTS_OPENAI_API_BASE_URL = AUDIO_TTS_OPENAI_API_BASE_URL |
|
app.state.config.TTS_OPENAI_API_KEY = AUDIO_TTS_OPENAI_API_KEY |
|
app.state.config.TTS_ENGINE = AUDIO_TTS_ENGINE |
|
app.state.config.TTS_MODEL = AUDIO_TTS_MODEL |
|
app.state.config.TTS_VOICE = AUDIO_TTS_VOICE |
|
app.state.config.TTS_API_KEY = AUDIO_TTS_API_KEY |
|
app.state.config.TTS_SPLIT_ON = AUDIO_TTS_SPLIT_ON |
|
|
|
app.state.config.TTS_AZURE_SPEECH_REGION = AUDIO_TTS_AZURE_SPEECH_REGION |
|
app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT = AUDIO_TTS_AZURE_SPEECH_OUTPUT_FORMAT |
|
|
|
|
|
whisper_device_type = DEVICE_TYPE if DEVICE_TYPE and DEVICE_TYPE == "cuda" else "cpu" |
|
log.info(f"whisper_device_type: {whisper_device_type}") |
|
|
|
SPEECH_CACHE_DIR = Path(CACHE_DIR).joinpath("./audio/speech/") |
|
SPEECH_CACHE_DIR.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
def set_faster_whisper_model(model: str, auto_update: bool = False): |
|
if model and app.state.config.STT_ENGINE == "": |
|
from faster_whisper import WhisperModel |
|
|
|
faster_whisper_kwargs = { |
|
"model_size_or_path": model, |
|
"device": whisper_device_type, |
|
"compute_type": "int8", |
|
"download_root": WHISPER_MODEL_DIR, |
|
"local_files_only": not auto_update, |
|
} |
|
|
|
try: |
|
app.state.faster_whisper_model = WhisperModel(**faster_whisper_kwargs) |
|
except Exception: |
|
log.warning( |
|
"WhisperModel initialization failed, attempting download with local_files_only=False" |
|
) |
|
faster_whisper_kwargs["local_files_only"] = False |
|
app.state.faster_whisper_model = WhisperModel(**faster_whisper_kwargs) |
|
|
|
else: |
|
app.state.faster_whisper_model = None |
|
|
|
|
|
class TTSConfigForm(BaseModel): |
|
OPENAI_API_BASE_URL: str |
|
OPENAI_API_KEY: str |
|
API_KEY: str |
|
ENGINE: str |
|
MODEL: str |
|
VOICE: str |
|
SPLIT_ON: str |
|
AZURE_SPEECH_REGION: str |
|
AZURE_SPEECH_OUTPUT_FORMAT: str |
|
|
|
|
|
class STTConfigForm(BaseModel): |
|
OPENAI_API_BASE_URL: str |
|
OPENAI_API_KEY: str |
|
ENGINE: str |
|
MODEL: str |
|
WHISPER_MODEL: str |
|
|
|
|
|
class AudioConfigUpdateForm(BaseModel): |
|
tts: TTSConfigForm |
|
stt: STTConfigForm |
|
|
|
|
|
from pydub import AudioSegment |
|
from pydub.utils import mediainfo |
|
|
|
|
|
def is_mp4_audio(file_path): |
|
"""Check if the given file is an MP4 audio file.""" |
|
if not os.path.isfile(file_path): |
|
print(f"File not found: {file_path}") |
|
return False |
|
|
|
info = mediainfo(file_path) |
|
if ( |
|
info.get("codec_name") == "aac" |
|
and info.get("codec_type") == "audio" |
|
and info.get("codec_tag_string") == "mp4a" |
|
): |
|
return True |
|
return False |
|
|
|
|
|
def convert_mp4_to_wav(file_path, output_path): |
|
"""Convert MP4 audio file to WAV format.""" |
|
audio = AudioSegment.from_file(file_path, format="mp4") |
|
audio.export(output_path, format="wav") |
|
print(f"Converted {file_path} to {output_path}") |
|
|
|
|
|
@app.get("/config") |
|
async def get_audio_config(user=Depends(get_admin_user)): |
|
return { |
|
"tts": { |
|
"OPENAI_API_BASE_URL": app.state.config.TTS_OPENAI_API_BASE_URL, |
|
"OPENAI_API_KEY": app.state.config.TTS_OPENAI_API_KEY, |
|
"API_KEY": app.state.config.TTS_API_KEY, |
|
"ENGINE": app.state.config.TTS_ENGINE, |
|
"MODEL": app.state.config.TTS_MODEL, |
|
"VOICE": app.state.config.TTS_VOICE, |
|
"SPLIT_ON": app.state.config.TTS_SPLIT_ON, |
|
"AZURE_SPEECH_REGION": app.state.config.TTS_AZURE_SPEECH_REGION, |
|
"AZURE_SPEECH_OUTPUT_FORMAT": app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT, |
|
}, |
|
"stt": { |
|
"OPENAI_API_BASE_URL": app.state.config.STT_OPENAI_API_BASE_URL, |
|
"OPENAI_API_KEY": app.state.config.STT_OPENAI_API_KEY, |
|
"ENGINE": app.state.config.STT_ENGINE, |
|
"MODEL": app.state.config.STT_MODEL, |
|
"WHISPER_MODEL": app.state.config.WHISPER_MODEL, |
|
}, |
|
} |
|
|
|
|
|
@app.post("/config/update") |
|
async def update_audio_config( |
|
form_data: AudioConfigUpdateForm, user=Depends(get_admin_user) |
|
): |
|
app.state.config.TTS_OPENAI_API_BASE_URL = form_data.tts.OPENAI_API_BASE_URL |
|
app.state.config.TTS_OPENAI_API_KEY = form_data.tts.OPENAI_API_KEY |
|
app.state.config.TTS_API_KEY = form_data.tts.API_KEY |
|
app.state.config.TTS_ENGINE = form_data.tts.ENGINE |
|
app.state.config.TTS_MODEL = form_data.tts.MODEL |
|
app.state.config.TTS_VOICE = form_data.tts.VOICE |
|
app.state.config.TTS_SPLIT_ON = form_data.tts.SPLIT_ON |
|
app.state.config.TTS_AZURE_SPEECH_REGION = form_data.tts.AZURE_SPEECH_REGION |
|
app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT = ( |
|
form_data.tts.AZURE_SPEECH_OUTPUT_FORMAT |
|
) |
|
|
|
app.state.config.STT_OPENAI_API_BASE_URL = form_data.stt.OPENAI_API_BASE_URL |
|
app.state.config.STT_OPENAI_API_KEY = form_data.stt.OPENAI_API_KEY |
|
app.state.config.STT_ENGINE = form_data.stt.ENGINE |
|
app.state.config.STT_MODEL = form_data.stt.MODEL |
|
app.state.config.WHISPER_MODEL = form_data.stt.WHISPER_MODEL |
|
set_faster_whisper_model(form_data.stt.WHISPER_MODEL, WHISPER_MODEL_AUTO_UPDATE) |
|
|
|
return { |
|
"tts": { |
|
"OPENAI_API_BASE_URL": app.state.config.TTS_OPENAI_API_BASE_URL, |
|
"OPENAI_API_KEY": app.state.config.TTS_OPENAI_API_KEY, |
|
"API_KEY": app.state.config.TTS_API_KEY, |
|
"ENGINE": app.state.config.TTS_ENGINE, |
|
"MODEL": app.state.config.TTS_MODEL, |
|
"VOICE": app.state.config.TTS_VOICE, |
|
"SPLIT_ON": app.state.config.TTS_SPLIT_ON, |
|
"AZURE_SPEECH_REGION": app.state.config.TTS_AZURE_SPEECH_REGION, |
|
"AZURE_SPEECH_OUTPUT_FORMAT": app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT, |
|
}, |
|
"stt": { |
|
"OPENAI_API_BASE_URL": app.state.config.STT_OPENAI_API_BASE_URL, |
|
"OPENAI_API_KEY": app.state.config.STT_OPENAI_API_KEY, |
|
"ENGINE": app.state.config.STT_ENGINE, |
|
"MODEL": app.state.config.STT_MODEL, |
|
"WHISPER_MODEL": app.state.config.WHISPER_MODEL, |
|
}, |
|
} |
|
|
|
|
|
@app.post("/speech") |
|
async def speech(request: Request, user=Depends(get_verified_user)): |
|
body = await request.body() |
|
name = hashlib.sha256(body).hexdigest() |
|
|
|
file_path = SPEECH_CACHE_DIR.joinpath(f"{name}.mp3") |
|
file_body_path = SPEECH_CACHE_DIR.joinpath(f"{name}.json") |
|
|
|
|
|
if file_path.is_file(): |
|
return FileResponse(file_path) |
|
|
|
if app.state.config.TTS_ENGINE == "openai": |
|
headers = {} |
|
headers["Authorization"] = f"Bearer {app.state.config.TTS_OPENAI_API_KEY}" |
|
headers["Content-Type"] = "application/json" |
|
|
|
try: |
|
body = body.decode("utf-8") |
|
body = json.loads(body) |
|
body["model"] = app.state.config.TTS_MODEL |
|
body = json.dumps(body).encode("utf-8") |
|
except Exception: |
|
pass |
|
|
|
r = None |
|
try: |
|
r = requests.post( |
|
url=f"{app.state.config.TTS_OPENAI_API_BASE_URL}/audio/speech", |
|
data=body, |
|
headers=headers, |
|
stream=True, |
|
) |
|
|
|
r.raise_for_status() |
|
|
|
|
|
with open(file_path, "wb") as f: |
|
for chunk in r.iter_content(chunk_size=8192): |
|
f.write(chunk) |
|
|
|
with open(file_body_path, "w") as f: |
|
json.dump(json.loads(body.decode("utf-8")), f) |
|
|
|
|
|
return FileResponse(file_path) |
|
|
|
except Exception as e: |
|
log.exception(e) |
|
error_detail = "Open WebUI: Server Connection Error" |
|
if r is not None: |
|
try: |
|
res = r.json() |
|
if "error" in res: |
|
error_detail = f"External: {res['error']['message']}" |
|
except Exception: |
|
error_detail = f"External: {e}" |
|
|
|
raise HTTPException( |
|
status_code=r.status_code if r != None else 500, |
|
detail=error_detail, |
|
) |
|
|
|
elif app.state.config.TTS_ENGINE == "elevenlabs": |
|
payload = None |
|
try: |
|
payload = json.loads(body.decode("utf-8")) |
|
except Exception as e: |
|
log.exception(e) |
|
raise HTTPException(status_code=400, detail="Invalid JSON payload") |
|
|
|
voice_id = payload.get("voice", "") |
|
|
|
if voice_id not in get_available_voices(): |
|
raise HTTPException( |
|
status_code=400, |
|
detail="Invalid voice id", |
|
) |
|
|
|
url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}" |
|
|
|
headers = { |
|
"Accept": "audio/mpeg", |
|
"Content-Type": "application/json", |
|
"xi-api-key": app.state.config.TTS_API_KEY, |
|
} |
|
|
|
data = { |
|
"text": payload["input"], |
|
"model_id": app.state.config.TTS_MODEL, |
|
"voice_settings": {"stability": 0.5, "similarity_boost": 0.5}, |
|
} |
|
|
|
try: |
|
r = requests.post(url, json=data, headers=headers) |
|
|
|
r.raise_for_status() |
|
|
|
|
|
with open(file_path, "wb") as f: |
|
for chunk in r.iter_content(chunk_size=8192): |
|
f.write(chunk) |
|
|
|
with open(file_body_path, "w") as f: |
|
json.dump(json.loads(body.decode("utf-8")), f) |
|
|
|
|
|
return FileResponse(file_path) |
|
|
|
except Exception as e: |
|
log.exception(e) |
|
error_detail = "Open WebUI: Server Connection Error" |
|
if r is not None: |
|
try: |
|
res = r.json() |
|
if "error" in res: |
|
error_detail = f"External: {res['error']['message']}" |
|
except Exception: |
|
error_detail = f"External: {e}" |
|
|
|
raise HTTPException( |
|
status_code=r.status_code if r != None else 500, |
|
detail=error_detail, |
|
) |
|
|
|
elif app.state.config.TTS_ENGINE == "azure": |
|
payload = None |
|
try: |
|
payload = json.loads(body.decode("utf-8")) |
|
except Exception as e: |
|
log.exception(e) |
|
raise HTTPException(status_code=400, detail="Invalid JSON payload") |
|
|
|
region = app.state.config.TTS_AZURE_SPEECH_REGION |
|
language = app.state.config.TTS_VOICE |
|
locale = "-".join(app.state.config.TTS_VOICE.split("-")[:1]) |
|
output_format = app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT |
|
url = f"https://{region}.tts.speech.microsoft.com/cognitiveservices/v1" |
|
|
|
headers = { |
|
"Ocp-Apim-Subscription-Key": app.state.config.TTS_API_KEY, |
|
"Content-Type": "application/ssml+xml", |
|
"X-Microsoft-OutputFormat": output_format, |
|
} |
|
|
|
data = f"""<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" xml:lang="{locale}"> |
|
<voice name="{language}">{payload["input"]}</voice> |
|
</speak>""" |
|
|
|
response = requests.post(url, headers=headers, data=data) |
|
|
|
if response.status_code == 200: |
|
with open(file_path, "wb") as f: |
|
f.write(response.content) |
|
return FileResponse(file_path) |
|
else: |
|
log.error(f"Error synthesizing speech - {response.reason}") |
|
raise HTTPException( |
|
status_code=500, detail=f"Error synthesizing speech - {response.reason}" |
|
) |
|
|
|
|
|
def transcribe(file_path): |
|
print("transcribe", file_path) |
|
filename = os.path.basename(file_path) |
|
file_dir = os.path.dirname(file_path) |
|
id = filename.split(".")[0] |
|
|
|
if app.state.config.STT_ENGINE == "": |
|
if app.state.faster_whisper_model is None: |
|
set_faster_whisper_model(app.state.config.WHISPER_MODEL) |
|
|
|
model = app.state.faster_whisper_model |
|
segments, info = model.transcribe(file_path, beam_size=5) |
|
log.info( |
|
"Detected language '%s' with probability %f" |
|
% (info.language, info.language_probability) |
|
) |
|
|
|
transcript = "".join([segment.text for segment in list(segments)]) |
|
data = {"text": transcript.strip()} |
|
|
|
|
|
transcript_file = f"{file_dir}/{id}.json" |
|
with open(transcript_file, "w") as f: |
|
json.dump(data, f) |
|
|
|
log.debug(data) |
|
return data |
|
elif app.state.config.STT_ENGINE == "openai": |
|
if is_mp4_audio(file_path): |
|
print("is_mp4_audio") |
|
os.rename(file_path, file_path.replace(".wav", ".mp4")) |
|
|
|
convert_mp4_to_wav(file_path.replace(".wav", ".mp4"), file_path) |
|
|
|
headers = {"Authorization": f"Bearer {app.state.config.STT_OPENAI_API_KEY}"} |
|
|
|
files = {"file": (filename, open(file_path, "rb"))} |
|
data = {"model": app.state.config.STT_MODEL} |
|
|
|
log.debug(files, data) |
|
|
|
r = None |
|
try: |
|
r = requests.post( |
|
url=f"{app.state.config.STT_OPENAI_API_BASE_URL}/audio/transcriptions", |
|
headers=headers, |
|
files=files, |
|
data=data, |
|
) |
|
|
|
r.raise_for_status() |
|
|
|
data = r.json() |
|
|
|
|
|
transcript_file = f"{file_dir}/{id}.json" |
|
with open(transcript_file, "w") as f: |
|
json.dump(data, f) |
|
|
|
print(data) |
|
return data |
|
except Exception as e: |
|
log.exception(e) |
|
error_detail = "Open WebUI: Server Connection Error" |
|
if r is not None: |
|
try: |
|
res = r.json() |
|
if "error" in res: |
|
error_detail = f"External: {res['error']['message']}" |
|
except Exception: |
|
error_detail = f"External: {e}" |
|
|
|
raise Exception(error_detail) |
|
|
|
|
|
@app.post("/transcriptions") |
|
def transcription( |
|
file: UploadFile = File(...), |
|
user=Depends(get_verified_user), |
|
): |
|
log.info(f"file.content_type: {file.content_type}") |
|
|
|
if file.content_type not in ["audio/mpeg", "audio/wav", "audio/ogg", "audio/x-m4a"]: |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.FILE_NOT_SUPPORTED, |
|
) |
|
|
|
try: |
|
ext = file.filename.split(".")[-1] |
|
id = uuid.uuid4() |
|
|
|
filename = f"{id}.{ext}" |
|
contents = file.file.read() |
|
|
|
file_dir = f"{CACHE_DIR}/audio/transcriptions" |
|
os.makedirs(file_dir, exist_ok=True) |
|
file_path = f"{file_dir}/{filename}" |
|
|
|
with open(file_path, "wb") as f: |
|
f.write(contents) |
|
|
|
try: |
|
if os.path.getsize(file_path) > MAX_FILE_SIZE: |
|
log.debug(f"File size is larger than {MAX_FILE_SIZE_MB}MB") |
|
audio = AudioSegment.from_file(file_path) |
|
audio = audio.set_frame_rate(16000).set_channels(1) |
|
compressed_path = f"{file_dir}/{id}_compressed.opus" |
|
audio.export(compressed_path, format="opus", bitrate="32k") |
|
log.debug(f"Compressed audio to {compressed_path}") |
|
file_path = compressed_path |
|
|
|
if ( |
|
os.path.getsize(file_path) > MAX_FILE_SIZE |
|
): |
|
log.debug( |
|
f"Compressed file size is still larger than {MAX_FILE_SIZE_MB}MB: {os.path.getsize(file_path)}" |
|
) |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.FILE_TOO_LARGE( |
|
size=f"{MAX_FILE_SIZE_MB}MB" |
|
), |
|
) |
|
|
|
data = transcribe(file_path) |
|
else: |
|
data = transcribe(file_path) |
|
|
|
file_path = file_path.split("/")[-1] |
|
return {**data, "filename": file_path} |
|
except Exception as e: |
|
log.exception(e) |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
except Exception as e: |
|
log.exception(e) |
|
|
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
|
|
def get_available_models() -> list[dict]: |
|
if app.state.config.TTS_ENGINE == "openai": |
|
return [{"id": "tts-1"}, {"id": "tts-1-hd"}] |
|
elif app.state.config.TTS_ENGINE == "elevenlabs": |
|
headers = { |
|
"xi-api-key": app.state.config.TTS_API_KEY, |
|
"Content-Type": "application/json", |
|
} |
|
|
|
try: |
|
response = requests.get( |
|
"https://api.elevenlabs.io/v1/models", headers=headers, timeout=5 |
|
) |
|
response.raise_for_status() |
|
models = response.json() |
|
return [ |
|
{"name": model["name"], "id": model["model_id"]} for model in models |
|
] |
|
except requests.RequestException as e: |
|
log.error(f"Error fetching voices: {str(e)}") |
|
return [] |
|
|
|
|
|
@app.get("/models") |
|
async def get_models(user=Depends(get_verified_user)): |
|
return {"models": get_available_models()} |
|
|
|
|
|
def get_available_voices() -> dict: |
|
"""Returns {voice_id: voice_name} dict""" |
|
ret = {} |
|
if app.state.config.TTS_ENGINE == "openai": |
|
ret = { |
|
"alloy": "alloy", |
|
"echo": "echo", |
|
"fable": "fable", |
|
"onyx": "onyx", |
|
"nova": "nova", |
|
"shimmer": "shimmer", |
|
} |
|
elif app.state.config.TTS_ENGINE == "elevenlabs": |
|
try: |
|
ret = get_elevenlabs_voices() |
|
except Exception: |
|
|
|
pass |
|
elif app.state.config.TTS_ENGINE == "azure": |
|
try: |
|
region = app.state.config.TTS_AZURE_SPEECH_REGION |
|
url = f"https://{region}.tts.speech.microsoft.com/cognitiveservices/voices/list" |
|
headers = {"Ocp-Apim-Subscription-Key": app.state.config.TTS_API_KEY} |
|
|
|
response = requests.get(url, headers=headers) |
|
response.raise_for_status() |
|
voices = response.json() |
|
for voice in voices: |
|
ret[voice["ShortName"]] = ( |
|
f"{voice['DisplayName']} ({voice['ShortName']})" |
|
) |
|
except requests.RequestException as e: |
|
log.error(f"Error fetching voices: {str(e)}") |
|
|
|
return ret |
|
|
|
|
|
@lru_cache |
|
def get_elevenlabs_voices() -> dict: |
|
""" |
|
Note, set the following in your .env file to use Elevenlabs: |
|
AUDIO_TTS_ENGINE=elevenlabs |
|
AUDIO_TTS_API_KEY=sk_... # Your Elevenlabs API key |
|
AUDIO_TTS_VOICE=EXAVITQu4vr4xnSDxMaL # From https://api.elevenlabs.io/v1/voices |
|
AUDIO_TTS_MODEL=eleven_multilingual_v2 |
|
""" |
|
headers = { |
|
"xi-api-key": app.state.config.TTS_API_KEY, |
|
"Content-Type": "application/json", |
|
} |
|
try: |
|
|
|
response = requests.get("https://api.elevenlabs.io/v1/voices", headers=headers) |
|
response.raise_for_status() |
|
voices_data = response.json() |
|
|
|
voices = {} |
|
for voice in voices_data.get("voices", []): |
|
voices[voice["voice_id"]] = voice["name"] |
|
except requests.RequestException as e: |
|
|
|
log.error(f"Error fetching voices: {str(e)}") |
|
raise RuntimeError(f"Error fetching voices: {str(e)}") |
|
|
|
return voices |
|
|
|
|
|
@app.get("/voices") |
|
async def get_voices(user=Depends(get_verified_user)): |
|
return {"voices": [{"id": k, "name": v} for k, v in get_available_voices().items()]} |
|
|